Transportation Technician Qualification Program

AGGREGATE Participant Workbook
COPYRIGHT WAQTC / NAQTC
“1998”
Published October 2020

Copyright © 1998 by WAQTC (Western Alliance for Quality Transportation Construction) / NAQTC (Northwest Alliance for Quality Transportation Construction)

The rights granted under the U.S. Copyright Act (Title 17 of the U.S. Code) as used herein to define WAQTC’s exclusive rights to print, reprint, publish, and vend copyrightable subject matter.

All rights reserved.

PERMISSIONS:

The NAQTC/WAQTC owns all rights to its training materials including copyrights to the Electronic Files that may be accessed on WAQTC.org and WAQTC.com. The WAQTC / NAQTC hereby grants you permission to use the materials for training and reference only.

RESTRICTIONS:

No part of the materials may be reproduced, downloaded, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, except as expressly authorized by WAQTC.

Use of WAQTC’s logo, images, sound recordings, video recordings, including all derivative works is strictly prohibited without WAQTC’s expressed written consent. Written consent will be duly authorized by WAQTC Executive Board Chairman or Copyright Officer.

The distribution, exchange, publishing, adaptation, modification, sub-leasing, selling, renting, the act of requesting donations, charging fees, advertising, or reproduction of any portion of WAQTC web based / electronically available training materials, logo, image(s), sound and video recording(s), is strictly prohibited without prior written permission and authorization. Failure to obtain this permission will be subject to a WAQTC Copyright Infringement Notice if it is determined to be infringement.

The mentioning of the WAQTC organization, training modules, or other products by name does not imply any intention to infringe, nor should it be construed as a recommendation or endorsement on the part of the WAQTC.

Request permission using the WAQTC permissions form emailed to WAQTC’s Copyright Officer listed at WAQTC.org.

When permission is granted, the authorization only applies to that edition or work and shall not be construed as a blanket authorization for future versions. Additional copyright requests will be required.

Reproduction of any portion of an AASHTO test method in any format is strictly prohibited without written permission from AASHTO.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preface</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Foreword</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>Guidance for Course Evaluation Form</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>Course Evaluation Form</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>Course Objectives and Schedule</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>Learning Objectives</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>Course Outline and Suggested Schedule</td>
<td>xii</td>
</tr>
<tr>
<td>1</td>
<td>Quality Assurance Concepts</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>Background on Measurements and Calculations</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Units: Metric vs. English</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Mass vs. Weight</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td>Balances and Scales</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>Rounding</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>Significant Figures</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>Accuracy and Precision</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>Tolerance</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>1-12</td>
</tr>
<tr>
<td></td>
<td>Terminology</td>
<td>1-13</td>
</tr>
<tr>
<td></td>
<td>Safety</td>
<td>1-25</td>
</tr>
<tr>
<td></td>
<td>Random Sampling of Construction Materials</td>
<td>1-27</td>
</tr>
<tr>
<td>2</td>
<td>Basics of Aggregate</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Geology</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Properties</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>2-2</td>
</tr>
</tbody>
</table>
Field Operating Procedures

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>AASHTO R 90</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Sampling Aggregate Products</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AASHTO R 76</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Reducing Samples of Aggregate to Testing Size</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AASHTO T 255</td>
<td>5-1</td>
</tr>
<tr>
<td></td>
<td>Total Evaporable Moisture Content of Aggregate by Drying</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AASHTO T 27</td>
<td>6-1</td>
</tr>
<tr>
<td></td>
<td>Sieve Analysis of Fine and Coarse Aggregates, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AASHTO T 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials Finer Than 75 μm (No. 200) Sieve in Mineral Aggregates by Washing</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AASHTO T 335</td>
<td>7-1</td>
</tr>
<tr>
<td></td>
<td>Determining the Percentage of Fracture in Coarse Aggregate</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AASHTO T 176</td>
<td>8-1</td>
</tr>
<tr>
<td></td>
<td>Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test</td>
<td></td>
</tr>
<tr>
<td>9 thru 14</td>
<td>Appendix A – Field Operating Procedures - Short Form</td>
<td></td>
</tr>
</tbody>
</table>
This module is one of a set developed for the Western Alliance for Quality Transportation Construction (WAQTC). WAQTC is an alliance supported by the western state Transportation Departments, along with the Federal Highway Administration (FHWA) and the Western Federal Lands Highway Division (WFLHD) of FHWA. WAQTC’s charter includes the following mission.

MISSION
Provide continuously improving quality in transportation construction.

Through our partnership, we will:
- Promote an atmosphere of trust, cooperation, and communication between government agencies and with the private sector.
- Assure personnel are qualified.
- Respond to the requirements of identified needs and new technologies that impact the products that we provide.

BACKGROUND
There are two significant driving forces behind the development of the WAQTC qualification program. One, there is a trend to the use of quality control/quality assurance (QC/QA) specifications. QC/QA specifications include qualification requirements for a contractor’s QC personnel and will be requiring WAQTC qualified technicians. Two, Federal regulation on materials sampling and testing (23 CFR 637, Quality Assurance Procedures for Construction, published in June 1995) mandates that by June 29, 2000 all testing technicians whose results are used as part of the acceptance decision shall be qualified. In addition, the regulation allows the use of contractor test results to be used as part of the acceptance decision.

OBJECTIVES
WAQTC’s objectives for its Transportation Technician Qualification Program include the following:
- To provide highly skilled, knowledgeable materials sampling and testing technicians.
- To promote uniformity and consistency in testing.
- To provide reciprocity for qualified testing technicians between states.
- To create a harmonious working atmosphere between public and private employees based upon trust, open communication, and equivalency of qualifications.
Training and qualification of transportation technicians is required for several reasons. It will increase the knowledge of laboratory, production, and field technicians – both industry and agency personnel – and increase the number of available, qualified testers. It will reduce problems associated with test result differences. Regional qualification eliminates the issue of reciprocity between states and allows qualified QC technicians to cross state lines without having the concern or need to be requalified by a different program.

The WAQTC Executive Board
FOREWORD

This module is one of seven developed to satisfy the training requirements prescribed by Western Alliance for Quality Transportation Construction (WAQTC) for technicians involved in transportation projects. The seven modules cover:

- Aggregate
- Concrete
- Asphalt I
- Asphalt II
- Embankment and Base
- In-place Density
- Embankment and Base/In-place Density
- Self-Consolidating Concrete

The modules are based upon AASHTO test methods along with procedures developed by WAQTC. They are narrative in style, illustrated, and include step-by-step instruction. There are review questions at the end of each test procedure, which are intended to reinforce the participants’ understanding and help participants prepare for the final written and performance exams. Performance exam check lists are also included. The appendix includes WAQTC Field Operating Procedures (FOPs) in short form.

It is the technician’s responsibility to stay current as changes are made to this living document.

The comments and suggestions of every participant are essential to the continued success and high standards of the Transportation Technician Qualification Program. Please take the time to fill out the Course Evaluation Form as the course progresses and hand it in on the last day of class. If you need additional room to fully convey your thoughts, please use the back of the form.

The WAQTC Executive Board
GUIDANCE FOR COURSE EVALUATION FORM

The Course Evaluation Form on the following page is very important to the continuing improvement and success of this course. The form is included in each Participant Workbook. During the course introduction, the Instructor will call the participants’ attention to the form, its content, and the importance of its thoughtful completion at the end of the course. Participants will be encouraged to keep notes, or write down comments as the class progresses, in order to provide the best possible evaluation. The Instructor will direct participants to write down comments at the end of each day and to make use of the back of the form if more room is needed for comments.

On the last day of the course, just before the written examination, the Instructor will again refer to the form and instruct participants that completion of the form after their last examination is a requirement before leaving. Should the course have more than one Instructor, participants should be directed to list them as A, B, etc., with the Instructor’s name beside the letter, and direct their answers in the Instructor Evaluation portion of the form accordingly.
WESTERN ALLIANCE FOR QUALITY TRANSPORTATION CONSTRUCTION
COURSE EVALUATION FORM

The WAQTC Transportation Technician Qualification Program would appreciate your thoughtful completion of all items on this evaluation form. Your comments and constructive suggestions will be an asset in our continuing efforts to improve our course content and presentations.

Course Title: __
Location: __
Dates: ___
Your Name (Optional): ___
Employer: __
Instructor(s) __

COURSE CONTENT

Will the course help you perform your job better and with more understanding? Yes Maybe No
 Explain: __
__

Was there an adequate balance between theory, instruction, and hands-on application? Yes Maybe No
 Explain: __
__

Did the course prepare you to confidently complete both examinations? Yes Maybe No
 Explain: __
__

What was the most beneficial aspect of the course? ________________________________
__

What was the least beneficial aspect of the course? ________________________________
__
GENERAL COMMENTS
General comments on the course, content, materials, presentation method, facility, registration process, etc. Include suggestions for additional Tips!

INSTRUCTOR EVALUATION
Were the objectives of the course, and the instructional and exam approach, clearly explained?
Yes Maybe No
Explain:

Was the information presented in a clear, understandable manner?
Yes Maybe No
Explain:

Did the instructors demonstrate a good knowledge of the subject?
Yes Maybe No
Explain:

Did the instructors create an atmosphere in which to ask questions and hold open discussion?
Yes Maybe No
Explain:

07_Gen_Eval_17 x
COURSE OBJECTIVES AND SCHEDULE

Learning Objectives

Understanding:

- Quality Assurance (QA) concepts
- Measurements and calculations
- Highway materials terminology
- Safety issues
- Random sampling techniques
- Basics of aggregate
- Demonstrating proficiency in the following test procedures:
 - FOP for AASHTO R 90
 Sampling Aggregate Products
 - FOP for AASHTO R 76
 Reducing Field Samples of Aggregate to Testing Size
 - FOP for AASHTO T 255
 Total Evaporable Moisture Content of Aggregate by Drying
 - FOP for AASHTO T 27
 Sieve Analysis of Fine and Coarse Aggregates, and
 AASHTO T 11
 Materials Finer than 75 µm (No. 200) in Mineral Aggregates
 by Washing
 - FOP for AASHTO T 335
 Determining the Percentage of Fracture in Coarse Aggregate
 - FOP for AASHTO T 176
 Plastic Fines in Graded Aggregate by Use of the Sand
 Equivalent Test

The overall goals of this aggregate course are to understand the basics of aggregate and to be competent with specific quality control test procedures identified for the Transportation Technician Qualification Program of the Western Alliance for Quality Transportation Construction (WAQTC). Additional studies beyond this course will be required for those desiring greater in-depth knowledge of the theory behind the test procedures included herein.
Course Outline and Suggested Schedule

Day One

0800 Welcome
 Introduction of Instructors
 Introduction and Expectations of Participants

0815 WAQTC Mission and TTQP Objectives
 Instructional Objectives for the Course
 Overview of the Course
 Course Evaluation Form

0830 Review of Quality Assurance Concepts

0845 Background in Measurements and Calculations

0945 Break

1000 Random Sampling

1030 Basics of Aggregate

1045 Sampling Aggregate Products
 FOP for AASHTO R 90

1115 Reducing Field Samples of Aggregate to Testing Size
 FOP for AASHTO R 76

1145 Review Questions
 Questions and Answers

1200 Lunch

1315 Laboratory Practice
 Reducing Field Samples

1645 Evaluation
 End of Day

Day Two

0800 Questions from the Previous Day

0815 Total Evaporable Moisture Content of Aggregate by Drying
 FOP for AASHTO T 255
Day Three

0800 Questions from Previous Day

0815 Determining the Percentage of Fracture in Coarse Aggregate FOP for AASHTO T 335

0845 Plastic Fines in Graded Aggregates and Soils by the Use of the Sand Equivalent Test FOP for AASHTO T 176

0915 Review Questions Questions and Answers

0945 Break

1000 Laboratory Practice Completion of Any Moisture Content Determinations Fracture
1200 Lunch

1315 Laboratory Practice
 Sand Equivalent

1645 Evaluation
 End of day

Day Four

0800 Start of Exams

Participants will break into groups so that written and practical exams may be given concurrently.

Evaluation
QUALITY ASSURANCE CONCEPTS

The Federal Highway Administration (FHWA) has established requirements that each State Transportation Department must develop a Quality Assurance (QA) Program that is approved by the FHWA for projects on the National Highway System (NHS). In addition to complying with this requirement, implementing QA specifications in a construction program includes the benefit of improvement of overall quality of highway and bridge construction.

A QA Program may include three separate and distinct parts as illustrated below.

- **Quality Assurance (QA)** are those planned and systematic actions necessary to provide confidence that a product or service will satisfy given requirements for quality.

- **Quality Control (QC)** are those operational, process control techniques or activities that are performed or conducted to fulfill contract requirements for material and equipment quality. In some states, the constructor is responsible for providing QC sampling and testing, while in other states the STD handles QC. Where the constructor is responsible for QC tests, the results may be used for acceptance only if verified or accepted by additional tests performed by an independent group.

- **Verification/Acceptance** consists of the sampling and testing performed to validate QC sampling and testing and, thus, the quality of the product. Verification/Acceptance samples are obtained and tests are performed independently from those involved with QC. Samples taken for QC tests may not be used for Verification/Acceptance testing.

- **Independent Assurance (IA)** are those activities that are an unbiased and independent evaluation of all the sampling and testing procedures used in QC and Verification/Acceptance. IA may use a combination of laboratory certification, technician qualification or certification, proficiency samples, or split samples to assure that QC and Verification/Acceptance activities are valid. Agencies may qualify or certify laboratories and technicians, depending on the state in which the work is done.
BACKGROUND ON MEASUREMENTS AND CALCULATIONS

Introduction

This section provides a background in the mathematical rules and procedures used in making measurements and performing calculations. Topics include:

- Units: Metric vs. English
- Mass vs. Weight
- Balances and Scales
- Rounding
- Significant Figures
- Accuracy and Precision
- Tolerance

Also included is discussion of real-world applications in which the mathematical rules and procedures may not be followed.

Units: Metric vs. English

The bulk of this document uses dual units. Metric units are followed by Imperial, more commonly known as English, units in parentheses. For example: 25 mm (1 in.). Exams are presented in metric or English.

Depending on the situation, some conversions are exact, and some are approximate. One inch is exactly 25.4 mm. If a procedure calls for measuring to the closest 1/4 in., however, 5 mm is close enough. We do not have to say 6.35 mm. That is because 1/4 in. is halfway between 1/8 in. and 3/8 in. – or halfway between 3.2 and 9.5 mm.

Additionally, the tape measure or rule used may have 5 mm marks, but may not have 1 mm marks and certainly will not be graduated in 6 mm increments.

In SI (Le Systeme International d’Unites), the basic unit of mass is the kilogram (kg) and the basic unit of force, which includes weight, is the Newton (N). Mass in this document is given in grams (g) or kg. See the section below on “Mass vs. Weight” for
further discussion of this topic.

Mass vs. Weight

The terms mass, force, and weight are often confused. Mass, m, is a measure of an object’s material makeup, and has no direction. Force, F, is a measure of a push or pull, and has the direction of the push or pull. Force is equal to mass times acceleration, a.

$$F = ma$$

Weight, W, is a special kind of force, caused by gravitational acceleration. It is the force required to suspend or lift a mass against gravity. Weight is equal to mass times the acceleration due to gravity, g, and is directed toward the center of the earth.

$$W = mg$$

In SI, the basic unit of mass is the kilogram (kg), the units of acceleration are meters per square second (m/s^2), and the unit of force is the Newton (N). Thus a person having a mass of 84 kg subject to the standard acceleration due to gravity, on earth, of 9.81 m/s2 would have a weight of:

$$W = (84.0 \text{ kg})(9.81 \text{ m/s}^2) = 824 \text{ kg-m/s}^2 = 824 \text{ N}$$

In the English system, mass can be measured in pounds-mass (lbm), while acceleration is in feet per square second (ft/s^2), and force is in pounds-force (lbf). A person weighing 185 lbf on a scale has a mass of 185 lbm when subjected to the earth’s standard gravitational pull. If this person were to go to the moon, where the acceleration due to gravity is about one-sixth of what it is on earth, the person’s weight would be about 31 lbf, while his or her mass would remain 185 lbm. Mass does not depend on location, but weight does.

While the acceleration due to gravity does vary with position on the earth (latitude and elevation), the variation is not significant except for extremely precise work – the manufacture of electronic memory chips, for example.

As discussed above, there are two kinds of pounds, lbm and lbf. In laboratory measurements of mass, the gram or kilogram is the unit of choice. But, is
this mass or force? Technically, it depends on the instrument used, but practically speaking, mass is the result of the measurement. When using a scale, force is being measured – either electronically by the stretching of strain gauges or mechanically by the stretching of a spring or other device. When using a balance, mass is being measured, because the mass of the object is being compared to a known mass built into the balance.

In this document, mass, not weight, is used in test procedures except when determining “weight” in water. When an object is submerged in water (as is done in specific gravity tests), the term weight is used. Technically, what is being measured is the force the object exerts on the balance or scale while the object is submerged in water (or the submerged weight). This force is actually the weight of the object less the weight of the volume of water displaced.

In summary, whenever the common terms “weight” and “weighing” are used, the more appropriate terms “mass” and “determining mass” are usually implied, except in the case of weighing an object submerged in water.

Balances and Scales

Balances, technically used for mass determinations, and scales, used to weigh items, were discussed briefly above in the section on “Mass vs. Weight.” In field operating procedures, we usually do not differentiate between the two types of instruments. When using either one for a material or object in air, we are determining mass. For those procedures in which the material or object is suspended in water, we are determining weight in water.

AASHTO recognizes two general categories of instruments. Standard analytical balances are used in laboratories. For most field operations, general purpose balances and scales are specified. Specifications for both categories are shown in Tables 1 and 2.
Table 1
Standard Analytical Balances

<table>
<thead>
<tr>
<th>Class</th>
<th>Capacity</th>
<th>Readability and Sensitivity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>200 g</td>
<td>0.0001 g</td>
<td>0.0002 g</td>
</tr>
<tr>
<td>B</td>
<td>200 g</td>
<td>0.001 g</td>
<td>0.002 g</td>
</tr>
<tr>
<td>C</td>
<td>1200 g</td>
<td>0.01 g</td>
<td>0.02 g</td>
</tr>
</tbody>
</table>

Table 2
General Purpose Balances and Scales

<table>
<thead>
<tr>
<th>Class</th>
<th>Principal Sample Mass</th>
<th>Readability and Sensitivity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>2 kg or less</td>
<td>0.1 g</td>
<td>0.1 g or 0.1 percent</td>
</tr>
<tr>
<td>G5</td>
<td>2 kg to 5 kg</td>
<td>1 g</td>
<td>1 g or 0.1 percent</td>
</tr>
<tr>
<td>G20</td>
<td>5 kg to 20 kg</td>
<td>5 g</td>
<td>5 g or 0.1 percent</td>
</tr>
<tr>
<td>G100</td>
<td>Over 20 kg</td>
<td>20 g</td>
<td>20 g or 0.1 percent</td>
</tr>
</tbody>
</table>

Rounding

Numbers are commonly rounded up or down after measurement or calculation. For example, 53.67 would be rounded to 53.7 and 53.43 would be rounded to 53.4, if rounding were required. The first number was rounded up because 53.67 is closer to 53.7 than to 53.6. Likewise, the second number was rounded down because 53.43 is closer to 53.4 than to 53.5. The reasons for rounding are covered in the next section on “Significant Figures.”
If the number being rounded is followed by exactly 5, followed by only zeroes, two possibilities exist. In the more mathematically sound approach, numbers are rounded up or down depending on whether the number to the left of the 5 is odd or even. Thus, 102.25 would be rounded down to 102.2, while 102.35 would be rounded up to 102.4. This procedure avoids the bias that would exist if all numbers ending in 5 were rounded up or all numbers were rounded down. In some calculators, however, all rounding is up. This does result in some bias, or skewing of data, but the significance of the bias may or may not be significant to the calculations at hand.

When rounding numbers that are followed by exactly 5, follow agency guidelines. For the purpose of WAQTC training, if the number being rounded is followed by a 5, the number is increased by 1.

Significant Figures

- General

 A general-purpose balance or scale, classified as G20 in AASHTO M 231, has a capacity of 20,000 g and an accuracy requirement of ±5 g. A mass of 18,285 g determined with such an instrument could actually range from 18,280 g to 18,290 g. Only four places in the measurement are significant. The fifth (last) place is not significant since it may change.

 Mathematical rules exist for handling significant figures in different situations.

 An example in Metric (m) or English (ft), when performing addition and subtraction, the number of significant figures in the sum or difference is determined by the least precise input. Consider the three situations shown below:

<table>
<thead>
<tr>
<th>Situation 1</th>
<th>Situation 2</th>
<th>Situation 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.67</td>
<td>143.903</td>
<td>162</td>
</tr>
<tr>
<td>+ 423.938</td>
<td>- 23.6</td>
<td>+33.546</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- .022</td>
</tr>
<tr>
<td>= 459.61</td>
<td>= 120.3</td>
<td>= 196</td>
</tr>
<tr>
<td>not 459.608</td>
<td>not 120.303</td>
<td>not 195.524</td>
</tr>
</tbody>
</table>
Rules also exist for multiplication and division. These rules, and the rules for mixed operations involving addition, subtraction, multiplication, and/or division, are beyond the scope of these materials. AASHTO covers this topic to a certain extent in the section called “Precision” or “Precision and Bias” included in many test methods, and the reader is directed to those sections if more detail is desired.

• Real World Limitations

While the mathematical rules of significant digits have been established, they are not always followed. For example, AASHTO Method of Test T 176, Plastic Fines in Graded Aggregates and Soils by the Use of the Sand Equivalent Test, prescribes a method for rounding and significant digits in conflict with the mathematical rules.

In this procedure, readings and calculated values are always rounded up. A clay reading of 7.94 would be rounded to 8.0 and a sand reading of 3.21 would be rounded to 3.3. The rounded numbers are then used to calculate the Sand Equivalent, which is the ratio of the two numbers multiplied by 100. In this case:

\[
\frac{3.3}{8.0} \times 100 = 41.250 \ldots
\]

rounded to 41.3 and reported as 42

\[
\text{Not: } \frac{3.21}{7.94} \times 100 = 40.428 \ldots
\]

rounded to 40.0 and reported as 40

It is extremely important that engineers and technicians understand the rules of rounding and significant digits just as well as they know procedures called for in standard test methods.
Accuracy and Precision

Although often used interchangeably, the terms accuracy and precision do not mean the same thing. In an engineering sense, accuracy denotes nearness to the truth or some value accepted as the truth, while precision relates to the degree of refinement or repeatability of a measurement.

Two bulls-eye targets are shown to the left. The upper one indicates hits that are scattered and, yet, are very close to the center. The lower one has a tight pattern, but all the shots are biased from the center. The upper one is more accurate, while the lower one is more precise. A biased, but precise, instrument can often be adjusted physically or mathematically to provide reliable single measurements. A scattered, but accurate, instrument can be used if enough measurements are made to provide a valid average.

Consider the measurement of the temperature of boiling water at standard atmospheric pressure by two thermometers. Five readings were taken with each, and the values were averaged.

<table>
<thead>
<tr>
<th>Thermometer No. 1</th>
<th>Thermometer No. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.2° 214.2°</td>
<td>100.6° 213.1°</td>
</tr>
<tr>
<td>101.1° 214.0°</td>
<td>99.2° 210.6°</td>
</tr>
<tr>
<td>101.2° 214.2°</td>
<td>98.9° 210.0°</td>
</tr>
<tr>
<td>101.1° 214.0°</td>
<td>101.0° 213.8°</td>
</tr>
<tr>
<td>101.2° 214.2°</td>
<td>100.3° 212.5°</td>
</tr>
</tbody>
</table>

AVG = 101.2° 214.2° AVG = 100.0° 212.0°

No. 1 shows very little fluctuation, but is off the known boiling point (100°C or 212°F) by 1.2°C or 2.2°F. No. 2 has an average value equal to the known boiling point, but shows quite a bit of fluctuation. While it might be preferable to use neither thermometer, thermometer No. 1 could be employed if 1.2°C or 2.2°F were subtracted from each measurement. Thermometer No. 2 could be used if enough measurements were made to provide a valid average.
Engineering and scientific instruments should be calibrated and compared against reference standards periodically to assure that measurements are accurate. If such checks are not performed, the accuracy is uncertain, no matter what the precision. Calibration of an instrument removes fixed error, leaving only random error for concern.

Tolerance

Dimensions of constructed or manufactured objects, including laboratory test equipment, cannot be specified exactly. Some tolerance must be allowed. Thus, procedures for including tolerance in addition/subtraction and multiplication/division operations must be understood.

- Addition and Subtraction

When adding or subtracting two numbers that individually have a tolerance, the tolerance of the sum or difference is equal to the sum of the individual tolerances.

An example in Metric (m) or English (ft), if the distance between two points is made up of two parts, one being 113.361 ±0.006 and the other being 87.242 ±0.005 then the tolerance of the sum (or the difference) is:

\[(0.006) + (0.005) = 0.011\]

and the sum would be 200.603 ±0.011.

- Multiplication and Division

To demonstrate the determination of tolerance again in either Metric (m) or English (ft) for the product of two numbers, consider determining the area of a rectangle having sides of 76.254 ±0.009 and 34.972 ±0.007. The percentage variations of the two dimensions are:

\[
\frac{0.009}{76.254} \times 100 = 0.01\% \quad \frac{0.007}{34.972} \times 100 = 0.02\%
\]

The sum of the percentage variations is 0.03 percent – the variation that is employed in the area of the rectangle:
Area =
\[266.8 \, (m^2 \text{ or } ft^2) = \pm 0.03\% \]
\[= 2666.8 \pm 0.8 \, (m^2 \text{ or } ft^2) \]

- Real World Applications

Tolerances are used whenever a product is manufactured. For example, the mold used for determining soil density in AASHTO T 99 has a diameter of \(101.60 \pm 0.41\, mm(4.000 \pm 0.016\, in)\) and a height of \(116.43 \pm 0.13\, mm(4.584 \pm 0.005\, in)\).

Using the smaller of each dimension results in a volume of:
\[
\frac{\pi}{4} \times (101.19\, mm)^2 \times (116.30\, mm) \\
= 935,287 \, mm^3 \text{ or } 0.000935\, m^3
\]
\[
\frac{\pi}{4} \times (3.984\, in)^2 \times (4.579\, in) \\
= 57.082 \, in^3 \text{ or } 0.0330\, ft^3
\]

Using the larger of each dimension results in a volume of:
\[
\frac{\pi}{4} \times (102.01\, mm)^2 \times (116.56\, mm) \\
= 952.631 \, mm^3 \text{ or } 0.000953\, m^3
\]
\[
\frac{\pi}{4} \times (4.016\, in)^2 \times (4.589\, in) \\
= 58.130 \, in^3 \text{ or } 0.0336\, ft^3
\]

The average value is 0.000944 m\(^3\) (0.0333), and AASHTO T 99 specifies a volume of:
\[
0.000943 \pm 0.000008 \, m^3
\]
or a range of
\[
0.000935 \text{ to } 0.000951 \, m^3
\]
\[
0.0333 \pm 0.0003 \, ft^3
\]
or a range of
\[
0.0330 \text{ to } 0.0336 \, ft^3
\]
Because of the variation that can occur, some agencies periodically standardize molds, and make adjustments to calculated density based on those calculations.

Summary

Mathematics has certain rules and procedures for making measurements and performing calculations that are well established. So are standardized test procedures. Sometimes these agree, but occasionally, they do not. Engineers and technicians must be familiar with both but must follow test procedures in order to obtain valid, comparable results.
TERMINOLOGY

Many of the terms listed below are defined differently by various agencies or organizations. The definitions of the American Association of State Highway and Transportation Officials (AASHTO) are the ones most commonly used in this document.

Absorbed water – Water drawn into a solid by absorption, and having physical properties similar to ordinary water.

Absorption – The increase in the mass of aggregate due to water being absorbed into the pores of the material, but not including water adhering to the outside surface of the particles, expressed as a percentage of the dry mass.

Acceptance – See verification.

Acceptance program – All factors that comprise the State Transportation Department’s (STD) determination of the quality of the product as specified in the contract requirements. These factors include verification sampling, testing, and inspection and may include results of quality control sampling and testing.

Admixture – Material other than water, cement, and aggregates in Portland cement concrete (PCC).

Adsorbed water – Water attached to the surface of a solid by electrochemical forces, and having physical properties substantially different from ordinary water.

Aggregate – Hard granular material of mineral composition, including sand, gravel, slag or crushed stone, used in roadway base and in Portland cement concrete (PCC) and asphalt mixtures.

- **Coarse aggregate** – Aggregate retained on or above the No. 4 (4.75 mm) sieve.
- **Coarse-graded aggregate** – Aggregate having a predominance of coarse sizes.
- **Dense-graded aggregate** – Aggregate having a particle size distribution such that voids occupy a relatively small percentage of the total volume.
- **Fine aggregate** – Aggregate passing the No. 4 (4.75 mm) sieve.
- **Fine-graded aggregate** – Aggregate having a predominance of fine sizes.
- **Mineral filler** – A fine mineral product at least 70 percent of which passes a No. 200 (75 µm) sieve.
- **Open-graded gap-graded aggregate** – Aggregate having a particle size distribution such that voids occupy a relatively large percentage of the total volume.
- **Well-Graded Aggregate** – Aggregate having an even distribution of particle sizes.
Aggregate storage bins – Bins that store aggregate for feeding material to the dryer in a hot mix asphalt (HMA) plant in substantially the same proportion as required in the finished mix.

Agitation – Provision of gentle motion in Portland cement concrete (PCC) sufficient to prevent segregation and loss of plasticity.

Air voids (\(V_a\)) – Total volume of the small air pockets between coated aggregate particles in asphalt mixtures; expressed as a percentage of the bulk volume of the compacted paving mixture.

Ambient temperature – Temperature of the surrounding air

Angular aggregate – Aggregate possessing well-defined edges at the intersection of roughly planar faces

Apparent specific gravity (\(G_{sa}\)) – The ratio of the mass, in air, of a volume of the impermeable portion of aggregate to the mass of an equal volume of water at a stated temperature.

Asphalt – A dark brown to black cementitious material in which the predominate constituents are bitumens occurring in nature or obtained through petroleum processing. Asphalt is a constituent of most crude petroleums.

Asphalt emulsion – A mixture of asphalt binder and water.

Asphalt binder – An asphalt specially prepared in quality and consistency for use in the manufacture of asphalt mixtures.

Asphalt mixtures – A controlled mix of aggregate and asphalt binder.

Automatic cycling control – A control system in which the opening and closing of the weigh hopper discharge gate, the bituminous discharge valve, and the pugmill discharge gate are actuated by means of automatic mechanical or electronic devices without manual control. The system includes preset timing of dry and wet mixing cycles.

Automatic dryer control – A control system that automatically maintains the temperature of aggregates discharged from the dryer.

Automatic proportioning control – A control system in which proportions of the aggregate and asphalt binder fractions are controlled by means of gates or valves that are opened and closed by means of automatic mechanical or electronic devices without manual control.

Bag (of cement) – 94 lb of Portland cement (Approximately 1 ft\(^3\) of bulk cement)

Base – A layer of selected material constructed on top of subgrade or subbase and below the paving on a roadway.
Bias – The offset or skewing of data or information away from its true or accurate position as the result of systematic error.

Binder – Asphalt binder or modified asphalt binder that binds the aggregate particles into a dense mass.

Boulders – Rock fragment, often rounded, with an average dimension larger than 300 mm (12 in.).

Bulk specific gravity – The ratio of the mass, in air, of a volume of aggregate (G_{sa}) or compacted HMA mix (G_{mb}) (including the permeable and impermeable voids in the particles, but not including the voids between particles) to the mass of an equal volume of water at a stated temperature.

Bulk specific gravity (SSD) – The ratio of the mass, in air, of a volume of aggregate ($G_{sa SSD}$) or compacted asphalt mixtures ($G_{mb SSD}$), including the mass of water within the voids (but not including the voids between particles), to the mass of an equal volume of water at a stated temperature. (See saturated surface dry.)

Cementitious Materials – cement and pozzolans used in concrete such as: Portland cement, fly ash, silica fume, and blast-furnace slag.

Clay – Fine-grained soil that exhibits plasticity over a range of water contents, and that exhibits considerable strength when dry, also, that portion of the soil finer than 2 µm.

Cobble – Rock fragment, often rounded, with an average dimension between 75 and 300 mm (3 and 12 in.).

Cohesionless soil – Soil with little or no strength when dry and unconfined or when submerged, such as sand.

Cohesive soil – Soil with considerable strength when dry and that has significant cohesion when unconfined or submerged.

Compaction – Densification of a soil or asphalt mixtures by mechanical means.

Compaction curve (Proctor curve or moisture-density curve) – The curve showing the relationship between the dry unit weight or density and the water content of a soil for a given compactive effort.

Compaction test (moisture-density test) – Laboratory compaction procedure in which a soil of known water content is placed in a specified manner into a mold of given dimensions, subjected to a compactive effort of controlled magnitude, and the resulting density determined.

Compressibility – Property of a soil or rock relating to susceptibility to decrease in volume when subject to load.
Constant mass – The state at which a mass does not change more than a given percent, after additional drying for a defined time interval, at a required temperature.

Constructor – The builder of a project. The individual or entity responsible for performing and completing the construction of a project required by the contract documents. Often called a contractor, since this individual or entity contracts with the owner.

Cutback asphalt – Asphalt binder that has been modified by blending with a chemical solvent.

Crusher-run – The total unscreened product of a stone crusher.

Delivery tolerances – Permissible variations from the desired proportions of aggregate and asphalt binder delivered to the pugmill.

Density – The ratio of mass to volume of a substance. Usually expressed in lb/ft³ (kg/m³).

Design professional – The designer of a project. This individual or entity may provide services relating to the planning, design, and construction of a project, possibly including materials testing and construction inspection. Sometimes called a “contractor,” since this individual or entity contracts with the owner.

Dryer – An apparatus that dries aggregate and heats it to specified temperatures.

Dry mix time – The time interval between introduction of aggregate into the pugmill and the addition of asphalt binder.

Durability – The property of concrete that describes its ability to resist disintegration by weathering and traffic. Included under weathering are changes in the pavement and aggregate due to the action of water, including freezing and thawing.

Dust Proportion – DP (Dust to Effective (asphalt) Binder Ratio) – The percent passing the No. 200 sieve divided by the percent of effective asphalt binder.

Effective specific gravity (Gₘₑ) – The ratio of the mass in air of a unit volume of a permeable material (excluding voids permeable to asphalt binder) at a stated temperature to the mass in air (of equal density) of an equal volume of gas-free distilled water at a stated temperature.

Effective diameter (effective size) – D₁₀, particle diameter corresponding to 10 percent finer or passing.

Embankment – Controlled, compacted material between the subgrade and subbase or base in a roadway.

End-result specifications – Specifications that require the Constructor to take the entire responsibility for supplying a product or an item of construction. The Owner’s (the highway agency’s) responsibility is to either accept or reject the final product or to apply a price
adjustment that is commensurate with the degree of compliance with the specifications. Sometimes called performance specifications, although considered differently in highway work. (See performance specifications.)

Family of curves – a group of soil moisture-density relationships (curves) determined using AASHTO T 99 or T 180, which reveal certain similarities and trends characteristic of the soil type and source.

Field operating procedure (FOP) – Procedure used in field testing on a construction site or in a field laboratory. (Based on AASHTO or NAQTC test methods.)

Fineness modulus – A factor equal to the sum of the cumulative percentages of aggregate retained on certain sieves divided by 100; the sieves are 150, 75, 37.5, 19.0, 9.5, 4.75, 2.36, 1.18, 0.60, 0.30, and 0.15 mm. Used in the design of concrete mixes. The lower the fineness modulus, the more water/cement paste that is needed to coat the aggregate.

Fines – Portion of a soil or aggregate finer than a 75 µm (No. 200) sieve. Also silts and clays.

Fractured Face – An angular, rough, or broken surface of an aggregate particle created by crushing or by other means. A face is considered a “fractured face” whenever one-half or more of the projected area, when viewed normal to that face, is fractured with sharp and well defined edges. This excludes small nicks.

Fractured particle – A particle of aggregate having at least the minimum number of fractured faces specified.

Free water – Water on aggregate available for reaction with hydraulic cement. Mathematically, the difference between total moisture content and absorbed moisture content.

Glacial till – Material deposited by glaciation, usually composed of a wide range of particle sizes, which has not been subjected to the sorting action of water.

Gradation (grain-size distribution) – The proportions by mass of a soil or fragmented rock distributed by particle size.

Gradation analysis (grain size analysis or sieve analysis) – The process of determining grain-size distribution by separation of sieves with different size openings.

Hot aggregate storage bins – Bins that store heated and separated aggregate before final proportioning into the mixer.

Hot mix asphalt (HMA) – High quality, thoroughly controlled hot mixture of asphalt binder and well-graded, high quality aggregate.

Hot Mix Asphalt (HMA) batch plant – A manufacturing facility for producing hot mix asphalt (HMA) that proportions aggregate by weight and asphalt by weight or volume.
HMA continuous mix plant – A manufacturing facility for producing HMA that proportions aggregate and asphalt binder by a continuous volumetric proportioning system without specific batch intervals.

Hydraulic cement – Cement that sets and hardens by chemical reaction with water.

Independent assurance – Unbiased and independent evaluation of all the sampling and testing procedures, equipment, and technicians involved with Quality Control (QC) and Verification/Acceptance.

In situ – Rock or soil in its natural formation or deposit.

Liquid limit – Moisture content corresponding to the boundary between the liquid and plastic states.

Loam – A mixture of sand, silt or clay, or a combination thereof, with organic matter.

Lot – A quantity of material to be controlled. It may represent a specified mass, a specified number of truckloads, or a specified time period during production.

Manual proportioning control – A control system in which proportions of the aggregate and asphalt binder fractions are controlled by means of gates or valves that are opened and closed by manual means. The system may or may not include power assisted devices in the actuation of gate and valve opening and closing.

Materials and methods specifications – Also called prescriptive specifications. Specifications that direct the Constructor to use specified materials in definite proportions and specific types of equipment and methods to place the material.

Maximum size – One sieve larger than nominal maximum size.

Mesh – The square opening of a sieve.

Moisture content – The ratio, expressed as a percentage, of the mass of water in a material to the dry mass of the material.

Nominal maximum size – One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Note: The first sieve to normally retain more than 10 percent of the material usually is the second sieve in the stack but may be the third sieve.

Nuclear gauge – Instruments used to measure in-place density, moisture content, or asphalt binder content through the measurement of nuclear emissions.

Optimum moisture content (optimum water content) – The water content at which a soil can be compacted to a maximum dry density by a given compactive effort.
Organic soil – Soil with a high organic content.

Owner – The organization that conceives of and eventually operates and maintains a project. A State Transportation Departments (STD) is an Owner.

Paste – Mix of water and hydraulic cement that binds aggregate in Portland cement concrete (PCC).

Penetration – The consistency of a bituminous material, expressed as the distance in tenths of a millimeter (0.1 mm) that a standard needle vertically penetrates a sample of the material under specified conditions of loading, time, and temperature.

Percent of Absorbed (asphalt) Binder (P_{ba}) – The total percent of the asphalt binder that is absorbed into the aggregate, expressed as a percentage of the mass of aggregate rather than as a percentage of the total mass of the mixture. This portion of the asphalt binder content does not contribute to the performance of the mix.

Percent aggregate (stone) (P_s) – The percent aggregate (stone) content, expressed as a percentage of the total mass of the sample.

Percent of Effective (asphalt) Binder (P_{be}) – The total asphalt binder content of a paving mixture minus the portion of asphalt binder that is lost by absorption into the aggregate particles, expressed as a percentage of the mass of aggregate. It is the portion of the asphalt binder content that remains as a coating on the outside of the aggregate particles.

Percent compaction – The ratio of density of a soil, aggregate, or asphalt mixtures in the field to a maximum density determined by a standard compaction test, expressed as a percentage.

Performance specifications – Specifications that describe how the finished product should perform. For highways, performance is typically described in terms of changes over time in physical condition of the surface and its response to load, or in terms of the cumulative traffic required to bring the pavement to a condition defined as “failure.” Specifications containing warranty/guarantee clauses are a form of performance specifications.

Plant screens – Screens located between the dryer and hot aggregate storage bins that separate the heated aggregates by size.

Plastic limit – Moisture content corresponding to the boundary between the plastic and the semisolid states.

Plasticity – Property of a material to continue to deform indefinitely while sustaining a constant stress.

Plasticity index – Numerical difference between the liquid limit and the plastic limit and, thus, the range of water content over which the soil is plastic.

Portland cement concrete (PCC) – A controlled mix of aggregate, Portland cement, and water, and possibly other admixtures.

PCC batch plant – A manufacturing facility for producing Portland cement concrete.

Prescriptive specifications – See Materials and Methods specification.

Proficiency samples – Homogeneous samples that are distributed and tested by two or more laboratories. The test results are compared to assure that the laboratories are obtaining the same results.

Pugmill – A shaft mixer designed to mix aggregate and cement.

Quality assurance – Planned and systematic actions necessary to provide confidence that a product or service will satisfy given requirements for quality. The overall system for providing quality in a constructed project, including Quality Control (QC), Verification/Acceptance, and Independent Assurance (IA).

Quality assurance specifications – Also called QC/QA specifications. A combination of end-result (performance) specifications and materials and methods (prescriptive) specifications. The Constructor is responsible for quality control, and the Owner (highway agency) is responsible for acceptance of the product.

Quality control (QC) – Operational, process control techniques or activities that are performed or conducted to fulfill contract requirements for material or equipment quality.

Random sampling – Procedure for obtaining non-biased, representative samples.

Sand – Particles of rock passing the No. 4 (4.75 mm) sieve and retained on the No. 200 (75 µm) sieve.

Saturated surface dry (SSD) – Condition of an aggregate particle, asphalt mixtures or Portland cement concrete (PCC) core, or other porous solid when the permeable voids are filled with water, but no water is present on exposed surfaces. (See bulk specific gravity.)

Self-Consolidating Concrete (SCC) – A highly flowable non-segregating concrete mix that spreads into place and is able to flow and fill all corners of the formwork, even in the presence of congested reinforcement by means of its own mass with no mechanical vibration.

Segregation – The separation of aggregate by size resulting in a non-uniform material.

Sieve – Laboratory apparatus consisting of wire mesh with square openings, usually in circular or rectangular frames.

Silt – Material passing the (75 µm) sieve that is non-plastic or very slightly plastic, and that exhibits little or no strength when dry and unconfined. Also, that portion of the soil finer than 75 µm and coarser than 2 µm.
Slump – Measurement related to the workability of concrete.

Soil – Sediments or unconsolidated accumulations of solid particles produced by the physical and chemical disintegration or rocks, and which may or may not contain organic matter.

Specific gravity – The ratio of the mass of a volume of a material to the mass of an equal volume of water at a stated temperature.

- \(G_{mm} \) – theoretical maximum specific gravity (Gravity \(_{mix\ max}\))
 The ratio of the mass of a given volume of asphalt mixtures with no air voids to the mass of an equal volume of water, both at a stated temperature.

- \(G_{mb} \) – measured bulk specific gravity (Gravity \(_{mix\ bulk}\))
 The ratio of the mass, in air, of a volume of compacted HMA mix (including the permeable and impermeable voids in the particles, but not including the voids between particles) to the mass of an equal volume of water at a stated temperature.

- \(G_{sh} \) – oven-dry bulk specific gravity of aggregate (Gravity \(_{stone\ bulk}\))
 The ratio of the mass, in air, of a volume of aggregate (including the permeable and impermeable voids in the particles, but not including the voids between particles) to the mass of an equal volume of water at a stated temperature.

- \(G_{sa} \) – apparent specific gravity of aggregate (Gravity \(_{stone\ apparent}\))
 The ratio of the mass, in air, of a volume of the impermeable portion of aggregate to the mass of an equal volume of water at a stated temperature.

- \(G_{se} \) – effective specific gravity of aggregate (Gravity \(_{stone\ effective}\))
 The ratio of the mass in air of a unit volume of a permeable material (excluding voids permeable to asphalt binder) at a stated temperature to the mass in air (of equal density) of an equal volume of gas-free distilled water at a stated temperature.

- \(G_{b} \) – specific gravity of the binder (Gravity \(_{binder}\))
 The ratio of the mass of a volume of asphalt binder to the mass of an equal volume of water at a stated temperature.

Spine – smooth line extending through the point of maximum density/optimum moisture content of a family of moisture-density curves.

Stability – The ability of an asphalt mixture to resist deformation from imposed loads. Stability is dependent upon internal friction, cohesion, temperature, and rate of loading.

Stratified random sampling – Procedure for obtaining non-biased, representative samples in which the established lot size is divided into equally-sized sublots.

Subbase – A layer of selected material constructed between the subgrade and the base coarse in a flexible HMA roadway, or between the subgrade and Portland cement concrete (PCC) pavement in a rigid PCC roadway.
Subgrade – Natural soil prepared and compacted to support a structure or roadway pavement.

Sublot – A segment of a lot chosen to represent the total lot.

Superpave™ – Superpave™ (Superior Performing Asphalt Pavement) is a trademark of the Strategic Highway Research Program (SHRP). Superpave™ is a product of the SHRP asphalt research. The Superpave™ system incorporates performance-based asphalt materials characterization with design environmental conditions to improve performance by controlling rutting, low temperature cracking and fatigue cracking. The three major components of Superpave™ are the asphalt binder specification, the mix design and analysis system, and a computer software system.

Theoretical maximum specific gravity (G_{mm}) – The ratio of the mass of a given volume of asphalt mixtures with no air voids to the mass of an equal volume of water, both at a stated temperature.

Topsoil – Surface soil, usually containing organic matter.

Uniformity coefficient – C_u, a value employed to quantify how uniform or well-graded an aggregate is: $C_u = D_{60}/D_{10}$. 60 percent of the aggregate, by mass, has a diameter smaller than D_{60} and 10 percent of the aggregate, by mass, has a diameter smaller than D_{10}.

Unit weight – The ratio of weight to volume of a substance. The term “density” is more commonly used.

µm – Micro millimeter (micron) Used as measurement for sieve size.

Vendor – Supplier of project-produced material that is other than the constructor.

Verification – Process of sampling and testing performed to validate Quality Control (QC) sampling and testing and, thus, the quality of the product. Sometimes called Acceptance.

Void in the mineral aggregate (VMA) – The volume of inter-granular void space between aggregate particles of compacted asphalt mixtures that includes air and asphalt binder; expressed as a percentage of the bulk volume of the compacted paving mixture.

Voids filled with asphalt (VFA) – The portion of the void in the mineral aggregate (VMA) that contains asphalt binder; expressed as a percentage of the bulk volume of mix or the VMA.

Wet mixing period – The time interval between the beginning of application of asphalt binder and the opening of the mixer gate.

Zero air voids curve (saturation curve) – Curve showing the zero air voids density as a function of water content.
SAFETY

The procedures included in this manual may involve hazardous materials, operations, and equipment. The procedures do not address all of the safety issues associated with their use. It is the responsibility of the employer to assess workplace hazards and to determine whether personal protective equipment (PPE) must be used. PPE must meet applicable American National Standards Institute (ANSI) standards, and be properly used and maintained. The employer must establish appropriate safety and health practices, in compliance with applicable state and federal laws, for these procedures and associated job site hazards. Hazardous materials must be addressed in a Hazard Communication program, and Material Safety Data Sheets (MSDS) must be obtained and available to workers. Supervisors and employees should be aware of job site hazards, and comply with their employer’s safety and health program. The following table identifies some areas that may affect individuals performing the procedures in this manual.

<table>
<thead>
<tr>
<th>Body Part Affected</th>
<th>Potential Hazards</th>
<th>PPE/Procedures That May Be Appropriate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>Falling or fixed overhead objects; electrical shock</td>
<td>Hard hat or other protective helmet</td>
</tr>
<tr>
<td>Eyes and Face</td>
<td>Flying objects, radiation, molten metal, chemicals</td>
<td>Safety glasses, goggles, face shields; prescription or filter lenses</td>
</tr>
<tr>
<td>Ears</td>
<td>Noise</td>
<td>Ear plugs, ear muffs</td>
</tr>
<tr>
<td>Respiratory System</td>
<td>Inhalation of dusts, chemicals; O₂ deficiency</td>
<td>Properly fit and used respiratory protection consistent with the hazard</td>
</tr>
<tr>
<td>Skin</td>
<td>Chemicals including cement; heat</td>
<td>Appropriate chemical or heat resistant gloves, long-sleeve shirts, coveralls</td>
</tr>
<tr>
<td>Mouth, digestive system</td>
<td>Ingestion of toxic materials</td>
<td>Disposable or washable gloves, coveralls; personal hygiene</td>
</tr>
<tr>
<td>Hands</td>
<td>Physical injury (pinch, cut, puncture), chemicals</td>
<td>Appropriate gloves for physical hazards and compatible with chemicals present</td>
</tr>
<tr>
<td>Feet</td>
<td>Falling, sharp objects; slippery surfaces, chemicals</td>
<td>Safety shoes or boots (steel toed, steel shank); traction soles; rubber boots – chemicals, wet conditions</td>
</tr>
<tr>
<td>Joints, muscles, tendons</td>
<td>Lifting, bending, twisting, repetitive motions</td>
<td>Proper training and procedures; procedure modifications</td>
</tr>
<tr>
<td>Body/Torso</td>
<td>Falls; Burial</td>
<td>Fall protection; trench sloping or shoring</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Traffic</td>
<td>Visibility, awareness, communication; driver training, safety awareness</td>
</tr>
<tr>
<td>Whole body</td>
<td>Radiation</td>
<td>Radiation safety training</td>
</tr>
</tbody>
</table>
RANDOM SAMPLING OF CONSTRUCTION MATERIALS

Significance

Sampling and testing are two of the most important functions in quality control (QC). Data from the tests are the tools with which the quality of product is controlled. For this reason, great care must be used in following standardized sampling and testing procedures.

In controlling operations, it is necessary to obtain numerous samples at various points along the production line. Unless precautions are taken, sampling can occur in patterns that can create a bias to the data gathered. Sampling at the same time, say noon, each day may jeopardize the effectiveness of any quality program. This might occur, for example, because a material producer does certain operations, such as cleaning screens at an aggregate plant, late in the morning each day. To obtain a representative sample, a reliable system of random sampling must be employed.

Scope

The procedure presented here eliminates bias in sampling materials. Randomly selecting a set of numbers from a table or calculator will eliminate the possibility for bias. Random numbers are used to identify sampling times, locations, or points within a lot or sublot. This method does not cover how to sample, but rather how to determine sampling times, locations, or points.

Sampling Concepts

A lot is the quantity of material evaluated by QC procedures. A lot is a preselected quantity that may represent hours of production, a quantity or number of loads of material, or an interval of time. A lot may be comprised of several portions that are called sublots or units. The number of sublots comprising a lot will be determined by the agency’s specifications.
Straight Random Sampling vs. Stratified Random Sampling: Straight random sampling considers an entire lot as a single unit and determines each sample location based on the entire lot size. Stratified random sampling divides the lot into a specified number of sublots or units and then determines each sample location within a distinct sublot. Both methods result in random distribution of samples to be tested for compliance with the agency’s specification.

Agencies stipulate when to use straight random sampling or stratified random sampling. AASHTO R 90, Sampling Aggregate Products, for example, specifies a straight random sampling procedure.

Picking Random Numbers from a Table

Table 1 contains pairs of numbers. The first number is the “pick” number and the second is the Random Number, “RN”. The table was generated with a spreadsheet and the cells (boxes at the intersection of rows and columns) containing the RNs actually contain the “random number function.” Every time the spreadsheet is opened or changed, all the RNs change.

1. Select a Pick number in a random method. The first two or last two digits in the next automobile license plate you see would be one way to select. Another would be to start a digital stop watch and stop it several seconds later, using the decimal part of the seconds as your Pick number.

2. Find the RN matching the Pick number.

Picking Random Numbers with a Calculator

Many calculators have a built-in random number function. To obtain a random number, key in the code or push the button(s) the calculator’s instructions call for. The display will show a number between 0.000 and 1.000 and this will be your random number.
TABLE 1
Random Numbers

<table>
<thead>
<tr>
<th>Pick</th>
<th>RN</th>
<th>Pick</th>
<th>RN</th>
<th>Pick</th>
<th>RN</th>
<th>Pick</th>
<th>RN</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.998</td>
<td>21</td>
<td>0.758</td>
<td>41</td>
<td>0.398</td>
<td>61</td>
<td>0.895</td>
</tr>
<tr>
<td>02</td>
<td>0.656</td>
<td>22</td>
<td>0.552</td>
<td>42</td>
<td>0.603</td>
<td>62</td>
<td>0.442</td>
</tr>
<tr>
<td>03</td>
<td>0.539</td>
<td>23</td>
<td>0.702</td>
<td>43</td>
<td>0.150</td>
<td>63</td>
<td>0.821</td>
</tr>
<tr>
<td>04</td>
<td>0.458</td>
<td>24</td>
<td>0.217</td>
<td>44</td>
<td>0.001</td>
<td>64</td>
<td>0.187</td>
</tr>
<tr>
<td>05</td>
<td>0.407</td>
<td>25</td>
<td>0.000</td>
<td>45</td>
<td>0.521</td>
<td>65</td>
<td>0.260</td>
</tr>
<tr>
<td>06</td>
<td>0.062</td>
<td>26</td>
<td>0.781</td>
<td>46</td>
<td>0.462</td>
<td>66</td>
<td>0.815</td>
</tr>
<tr>
<td>07</td>
<td>0.370</td>
<td>27</td>
<td>0.317</td>
<td>47</td>
<td>0.553</td>
<td>67</td>
<td>0.154</td>
</tr>
<tr>
<td>08</td>
<td>0.410</td>
<td>28</td>
<td>0.896</td>
<td>48</td>
<td>0.591</td>
<td>68</td>
<td>0.007</td>
</tr>
<tr>
<td>09</td>
<td>0.923</td>
<td>29</td>
<td>0.848</td>
<td>49</td>
<td>0.797</td>
<td>69</td>
<td>0.759</td>
</tr>
<tr>
<td>10</td>
<td>0.499</td>
<td>30</td>
<td>0.045</td>
<td>50</td>
<td>0.638</td>
<td>70</td>
<td>0.925</td>
</tr>
<tr>
<td>11</td>
<td>0.392</td>
<td>31</td>
<td>0.692</td>
<td>51</td>
<td>0.006</td>
<td>71</td>
<td>0.131</td>
</tr>
<tr>
<td>12</td>
<td>0.271</td>
<td>32</td>
<td>0.530</td>
<td>52</td>
<td>0.526</td>
<td>72</td>
<td>0.702</td>
</tr>
<tr>
<td>13</td>
<td>0.816</td>
<td>33</td>
<td>0.796</td>
<td>53</td>
<td>0.147</td>
<td>73</td>
<td>0.146</td>
</tr>
<tr>
<td>14</td>
<td>0.969</td>
<td>34</td>
<td>0.100</td>
<td>54</td>
<td>0.042</td>
<td>74</td>
<td>0.355</td>
</tr>
<tr>
<td>15</td>
<td>0.188</td>
<td>35</td>
<td>0.902</td>
<td>55</td>
<td>0.609</td>
<td>75</td>
<td>0.292</td>
</tr>
<tr>
<td>16</td>
<td>0.185</td>
<td>36</td>
<td>0.674</td>
<td>56</td>
<td>0.579</td>
<td>76</td>
<td>0.854</td>
</tr>
<tr>
<td>17</td>
<td>0.809</td>
<td>37</td>
<td>0.509</td>
<td>57</td>
<td>0.887</td>
<td>77</td>
<td>0.240</td>
</tr>
<tr>
<td>18</td>
<td>0.105</td>
<td>38</td>
<td>0.013</td>
<td>58</td>
<td>0.495</td>
<td>78</td>
<td>0.851</td>
</tr>
<tr>
<td>19</td>
<td>0.715</td>
<td>39</td>
<td>0.497</td>
<td>59</td>
<td>0.039</td>
<td>79</td>
<td>0.678</td>
</tr>
<tr>
<td>20</td>
<td>0.380</td>
<td>40</td>
<td>0.587</td>
<td>60</td>
<td>0.812</td>
<td>80</td>
<td>0.122</td>
</tr>
</tbody>
</table>

Examples of Straight Random Sampling Procedures Using Random Numbers

Sampling from a Belt or Flowing Stream:
Agencies specify the frequency of sampling in terms of time, volumes, or masses. The specification might call for one sample from every 1,000,000 kg (1000 t) or 1100 Tons (T) of aggregate. If the random number was 0.317, the sample would be taken at (0.317)(1,000,000 kg) = 317,000 kg (317 t). Or (.317) (1100 T) = 349 T.

One sample per day might also be specified. If the day were 9 hours long and the random number 0.199, the sample would be taken at (0.199) (9 hrs) = 1.79 hr = 1 hr, 48 minutes into the day.

Sampling from Haul Units: Based on the agency’s specifications – in terms of time, volume, or mass – determine the number of haul units that comprise a lot. Multiply the selected random number(s) by the number of units to determine which unit(s) will be sampled.
For example, if 20 haul units comprise a lot and one sample is needed, pick one RN. If the RN were 0.773, then the sample would be taken from the \((0.773)(20) = 15.46\), or 16th haul unit.

Sampling from a Roadway with Previously Placed Material: The agency’s specified frequency of sampling – in time, volume, or mass – can be translated into a location on a job. For example, if a sample is to be taken every 800 m\(^3\) (1000yd\(^3\)) and material is being placed 0.15 m (0.50 ft) thick and 4.0 m (13 ft) wide, then the lot is 1330 m (4154 ft) long. You would select two RNs in this case. To convert yd\(^3\) to ft\(^3\) multiply by 27.

The first RN would be multiplied by the length to determine where the sample would be taken along the project. The second would be multiplied by the width to determine where, widthwise, the sample would be taken. For example, a first RN of 0.759 would specify that the sample would be taken at \((0.759)(1330 \text{ m})\) or \((4154 \text{ ft}) = 1010 \text{ m or } 3153 \text{ ft}\) from the beginning. A second RN of 0.255 would specify that the sample would be taken at \((0.255)(4.0 \text{ m})\) or \(13 \text{ ft}) = 1.02 \text{ m or } 3.3 \text{ ft}\) from the right edge of the material. To avoid problems associated with taking samples too close to the edge, no sample is taken closer than 0.3 m (1 ft) to the edge. If the RN specifies a location closer than 0.3 m (1 ft), then 0.3 m (1 ft) is added to or subtracted from the distance calculated.

Sampling from a Stockpile: AASHTO R 90 recommends against sampling from stockpiles. However, some agencies use random procedures in determining sampling locations from a stockpile. Bear in mind that stockpiles are prone to segregation and that a sample obtained from a stockpile may not be representative. Refer to AASHTO R 90 for guidance on how to sample from a stockpile.

In-Place Density Testing: Agency specifications will indicate the frequency of tests. For example, one test per 500 m\(^3\) (650 yd\(^3\)) might be required. If
When the material is being placed 0.15 m (0.50 ft) thick and 10.0 m (33 ft) wide, then the lot is 333 m (1090 ft) long. You would select two RNs in this case.

The first RN would be multiplied by the length to determine where the sample would be taken along the project. The second would be multiplied by the width to determine where, widthwise, the sample would be taken. For example, a first RN of 0.387 would specify that the sample would be taken at (0.387)(333 m) or (1090 ft) = 129 m or (422 ft) from the beginning. A second RN of 0.558 would specify that the sample would be taken at (0.558)(10.0 m) or (33 ft) = 5.88 m or (19 ft) from the right edge of the material. To avoid problems associated with taking samples too close to the edge, no sample is taken closer than 0.3 m (1 ft) to the edge. If the RN specifies a location closer than 0.3 m (1 ft), then 0.3 m (1 ft) is added to or subtracted from the distance calculated.
Introduction

Properties of aggregate materials depend upon mineral constituents present in parent rock formations. Rock is grouped in three major classes:

- Igneous
- Sedimentary
- Metamorphic

Classes are divided into types, which are further divided into families.

Geology

Igneous rocks are formed by solidification of molten rock. Grain size depends on the rate of cooling. Rapid cooling, such as occurs when lava flows on land, tends to produce fine grained rock such as basalt. Molten material cooled within the earth at slow rates tends to consist of large grain rock such as granite.

Sedimentary rock results when sediments are deposited by wind, water, or glaciers, or by direct precipitation of dissolved material in water. Sandstone is an example of mechanically deposited rock, while limestone is an example of chemically created rock.

Metamorphic rocks result from the “re-working” of existing rock (igneous, sedimentary, or older metamorphic) under the influence of high temperatures and pressures within the earth. Quartzite is metamorphosed sandstone, while marble is metamorphosed limestone.

All three classes of rock have been used as aggregates in road construction. The suitability of aggregate from a given source must be determined from a combination of tests and mineralogical examinations.
Precise, standard methods of sampling and testing are essential to obtaining results that correctly describe the characteristics of the aggregate. Depending on the characteristics, the aggregate may be used for road base, concrete, or hot mix asphalt.

Properties

Physical, chemical, and mechanical properties influence the suitability of aggregate for roadway construction. Physical properties include particle shape, particle size, size distribution, surface texture, absorption, specific gravity, unit weight, and void content. Chemical or electrochemical properties encompass solubility, reactivity with or resistance to attack by other chemicals, and affinity to asphalt cement. Mechanical properties include resistance to effects of applied traffic loads.

Table 1 summarizes basic properties of aggregate relative to three specific uses:

- Base – Aggregate Base Course
- PCC – Portland Cement Concrete
- Asphalt Mixtures

Summary

A knowledge and understanding of the characteristics, and the test methods used to determine these characteristics, are essential to the quality of concrete and asphalt mixtures. It is also critical where aggregate is used in road base and embankment. As sources for aggregates are diminished, more emphasis on making the most of current resources is necessary.
Table 1
Effects of Aggregate Properties on Base, PCC, and Asphalt Mixtures

<table>
<thead>
<tr>
<th>Aggregate Property</th>
<th>Effect on Material Produced</th>
<th>Base</th>
<th>PCC</th>
<th>Asphalt Mixtures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading – general</td>
<td></td>
<td>Impacts workability, density,</td>
<td>Impacts workability, density,</td>
<td>Impacts workability, density,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>strength, stability</td>
<td>strength, stability</td>
<td>strength, stability</td>
</tr>
<tr>
<td>Dense grading</td>
<td>Required for strength and</td>
<td>Not commonly used</td>
<td>Commonly used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gap grading</td>
<td>May be OK</td>
<td>Commonly used</td>
<td>May be OK</td>
<td></td>
</tr>
<tr>
<td>Open grading</td>
<td>Good for drainage, poor for</td>
<td>Poor choice</td>
<td>May be OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rounded and rough</td>
<td>Poor interlocking causes</td>
<td>Good for normal use</td>
<td>Good adhesion, poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weakness</td>
<td></td>
<td>interlocking</td>
<td></td>
</tr>
<tr>
<td>Rounded and smooth</td>
<td>Poorest choice</td>
<td>Lowers bond but good for normal</td>
<td>Poorest choice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>choice</td>
<td>use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angular and smooth</td>
<td>Acceptable</td>
<td>Lower bond may result</td>
<td>Good interlocking, poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>adhesion</td>
<td></td>
</tr>
<tr>
<td>Angular and rough</td>
<td>Best for normal use</td>
<td>Workability will be poor, but</td>
<td>Good adhesion, good</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>high strength will result</td>
<td>interlocking</td>
<td></td>
</tr>
<tr>
<td>Flakiness</td>
<td>Weak base material</td>
<td>Weak mix may result</td>
<td>Bridging (high voids and low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>strength), may degrade</td>
<td></td>
</tr>
<tr>
<td>Porosity</td>
<td>Susceptible to frost action</td>
<td>Reduces bond and freeze/thaw</td>
<td>Excessive values cause high</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>resistance, lowers strength</td>
<td>binder absorption, reduces</td>
<td></td>
</tr>
<tr>
<td>Specific gravity</td>
<td>Related to toughness</td>
<td>Required for mix design</td>
<td>Required for mix design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>calculations, related to</td>
<td>calculations, related to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>toughness</td>
<td>toughness</td>
<td></td>
</tr>
<tr>
<td>Cleanliness</td>
<td>Impurities, dust increase</td>
<td>Impurities, dust reduce</td>
<td>Impurities, dust reduce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>frost susceptibility</td>
<td>adhesion</td>
<td>adhesion</td>
<td></td>
</tr>
<tr>
<td>Toughness</td>
<td>Critical to strength</td>
<td>Usually not important</td>
<td>Critical to mix stability</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>Usually not important</td>
<td>Alkali-silica reactivity is</td>
<td>Electrochemical charge of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>serious concern</td>
<td>aggregates must be matched</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>with appropriate binders</td>
<td></td>
</tr>
</tbody>
</table>
Significance

Tests cannot be performed on all the material included in an entire project, so samples are taken from the whole. Proper material sampling is critical to all subsequent testing. If the representative portion obtained through sampling does not truly represent the material, any analysis of that portion is inappropriate for the project at hand. Since only a portion of the whole is used, that portion must be a reliable reflection of the whole. The size of the sample will depend upon the tests to be run and on the nominal maximum size of the aggregate.

Scope

This procedure covers sampling of coarse, fine, or a combination of coarse and fine aggregates (CA and FA) in accordance with AASHTO R 90-18. Sampling from conveyor belts, transport units, roadways, and stockpiles is covered.

Apparatus

- Shovels or scoops, or both
- Brooms, brushes, and scraping tools
- Sampling tubes of acceptable dimensions
- Mechanical sampling systems: normally a permanently attached device that allows a sample container to pass perpendicularly through the entire stream of material or diverts the entire stream of material into the container by manual, hydraulic, or pneumatic operation
- Belt template
- Sampling containers
Procedure - General

Sampling is as important as testing. The technician shall use every precaution to obtain samples that are representative of the material the sample represents. Determine the time or location for sampling in a random manner.

1. Wherever samples are taken, obtain multiple increments of approximately equal size.

2. Mix the increments thoroughly to form a field sample that meets or exceeds the minimum mass recommended in Table 1.

TABLE 1
Recommended Sample Sizes

<table>
<thead>
<tr>
<th>Nominal Maximum Size* (mm (in.))</th>
<th>Minimum Mass (g (lb))</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 (3 1/2)</td>
<td>175,000 (385)</td>
</tr>
<tr>
<td>75 (3)</td>
<td>150,000 (330)</td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>125,000 (275)</td>
</tr>
<tr>
<td>50 (2)</td>
<td>100,000 (220)</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>75,000 (165)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>50,000 (110)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>25,000 (55)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>15,000 (35)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>10,000 (25)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>10,000 (25)</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>10,000 (25)</td>
</tr>
</tbody>
</table>

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size. Maximum size is one size larger than nominal maximum size.

Note 1: Sample size is based upon the test(s) required. As a general rule, the field sample size should be such that, when split twice will provide a testing sample of proper size. For example, the sample size may be four times that shown in Table 1 of the FOP for AASHTO T 27/T 11, if that mass is more appropriate.
Nominal maximum size and maximum size are not the same.

Example:

<table>
<thead>
<tr>
<th>Sieve Size, mm (in)</th>
<th>Cumulative Percent Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 (3)</td>
<td>0</td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>0</td>
</tr>
<tr>
<td>50 (2)</td>
<td>0</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>7</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>32</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>38</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>47</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>58</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>72</td>
</tr>
</tbody>
</table>

First sieve to cumulatively retain >10 percent: 25.0 mm (1 in.)
Nominal maximum size: 37.5 mm (1 ½ in.)
Maximum size: 50 mm (2 in.)

Procedure – Specific Situations

Conveyor Belts

Avoid sampling at the beginning or the end of an aggregate run due to the potential for segregation. Be careful when sampling in the rain. Make sure to capture fines that may stick to the belt or that the rain tends to wash away.

Method A (From the Belt)

1. Stop the belt.
2. Set the sampling template in place on the belt, avoiding intrusion by adjacent material.
3. Remove the material from inside the template, including all fines.
4. Obtain at least three approximately equal increments.
5. Combine the increments to form a single sample.
Method B (From the Belt Discharge)

1. Pass a sampling device through the full stream of the material as it runs off the end of the conveyor belt. The sampling device may be manually, semi-automatic or automatically powered.

2. The sampling device shall pass through the stream at least twice, once in each direction, without overfilling while maintaining a constant speed during the sampling process.

3. When emptying the sampling device into the container, include all fines.

4. Combine the increments to form a single sample.

Transport Units

1. Visually divide the unit into four quadrants.

2. Identify one sampling location in each quadrant.

3. Dig down and remove approximately 0.3 m (1 ft) of material to avoid surface segregation. Obtain each increment from below this level.

4. Combine the increments to form a single sample.

Roadways

Method A (Berm or Windrow)

1. Obtain sample before spreading.

2. Take the increments from at least three random locations along the fully formed windrow or berm. Do not take the increments from the beginning or the end of the windrow or berm.

3. Obtain full cross-section samples of approximately equal size at each location. Take care to exclude the underlying material.

4. Combine the increments to form a single field sample.

Note 2: Obtaining samples from berms or windrows may yield extra-large samples and may not be the preferred sampling location.
Method B (In-Place)

1. Obtain sample after spreading and before compaction.
2. Take the increments from at least three random locations.
3. Obtain full-depth increments of approximately equal size from each location. Take care to exclude the underlying material.
4. Combine the increments to form a single sample.

Stockpiles

Method A–Loader sampling

1. Direct the loader operator to enter the stockpile with the bucket at least 150 mm (6 in.) above ground level without contaminating the stockpile.
2. Discard the first bucketful.
3. Have the loader re-enter the stockpile and obtain a full loader bucket of the material, tilt the bucket back and up.
4. Form a small sampling pile at the base of the stockpile by gently rolling the material out of the bucket with the bucket just high enough to permit free-flow of the material. (Repeat as necessary.)
5. Create a flat surface by having the loader back drag the small pile.
6. Visually divide the flat surface into four quadrants.
7. Collect an increment from each quadrant by fully inserting the shovel into the flat pile as vertically as possible, take care to exclude the underlying material, roll back the shovel and lift the material slowly out of the pile to avoid material rolling off the shovel.
Method B – Stockpile Face Sampling
1. Create horizontal surfaces with vertical faces in the top, middle, and bottom third of the stockpile with a shovel or loader.
2. Prevent sloughing by shoving a flat board against the vertical face. Sloughed material will be discarded to create the horizontal surface.
3. Obtain sample from the horizontal surface as close to the intersection as possible of the horizontal and vertical faces.
4. Obtain at least one increment of equal size from each of the top, middle, and bottom thirds of the pile.
5. Combine the increments to form a single sample.

Method C – Alternate Tube Method (Fine Aggregate)
1. Remove the outer layer that may have become segregated.
2. Using a sampling tube, obtain one increment of equal size from a minimum of five random locations on the pile.
 • Combine the increments to form a single sample.

Identification and Shipping
• Identify samples according to agency standards.
• Include sample report (below).
• Ship samples in containers that will prevent loss, contamination, or damage.
Report

- On forms approved by the agency
- Date
- Time
- Sample ID
- Sampling method
- Location
- Quantity represented
- Material type
- Supplier

Tips!

- Remember, the sample must be representative of the whole.
- And the sample must be selected at random to avoid bias.
- Automatic mechanical sampling is preferred.
REVIEW QUESTIONS

1. How can power equipment, such as loaders and backhoes, be used to collect aggregate samples?

2. Describe the process for sampling from a conveyor belt using method “A.”

3. Describe sampling from roadways.
PERFORMANCE EXAM CHECKLIST

SAMPLING AGGREGATE PRODUCTS
FOP FOR AASHTO R 90

Participant Name ______________________________ Exam Date ______________

Record the symbols “P” for passing or “F” for failing on each step of the checklist.

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conveyor Belts – Method A (From the Belt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Belt stopped?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>2. Sampling template set on belt, avoiding intrusion of adjacent material?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>3. Sample, including all fines, scooped off?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>4. Samples taken in at least three approximately equal increments?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>Conveyor Belts – Method B (From the Belt Discharge)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Sampling device passed through full stream of material twice (once in each direction) as it runs off end of belt?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>Transport Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Unit divided into four quadrants?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>7. Increment obtained from each quadrant, 0.3 m (1ft.) below surface?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>8. Increments combined to make up the sample?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>Roadways Method A (Berm or Windrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Sample taken before spreading?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>10. Full depth of material taken?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>11. Underlying material excluded?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>12. Samples taken in at least three approximately equal increments?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>Roadways Method B (In-place)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Sample taken after spreading?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>14. Full depth of material taken?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>15. Underlying material excluded?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>16. Samples taken in at least three approximately equal increments?</td>
<td>_____</td>
<td>_____</td>
</tr>
</tbody>
</table>

OVER
Stockpile Method A – (Loader sampling)

17. Loader operator directed to enter the stockpile with the bucket at least 150 mm (6 in.) above ground level without contaminating the stockpile? _____ _____

18. First bucketful discarded? _____ _____

19. The loader re-entered the stockpile and obtained a full loader bucket of the material with the bucket tilted back and up? _____ _____

20. A small sampling pile formed at the base of the stockpile by gently rolling the material out of the bucket with the bucket just high enough to permit free-flow of the material? _____ _____

21. A flat surface created by the loader back dragging the small pile? _____ _____

22. Increment sampled from each quadrant by fully inserting the shovel into the flat pile as vertically as possible, care taken to exclude the underlying material? _____ _____

Stockpile Method B (Stockpile Face)

23. Created horizontal surfaces with vertical faces? _____ _____

24. At least one increment taken from each of the top, middle, and bottom thirds of the stockpile. _____ _____

Stockpile Method C – Alternate Tube Method (Fine Aggregate)

25. Outer layer removed? _____ _____

26. Increments taken from at least five locations with a sampling tube? _____ _____

General

27. Increments mixed thoroughly to form sample? _____ _____

Comments: First attempt: Pass____ Fail____ Second attempt: Pass____ Fail____

Examiner Signature ______________________ WAQTC #: ____________________
PERFORMANCE EXAM CHECKLIST (ORAL)

SAMPLING OF AGGREGATE PRODUCTS
FOP FOR AASHTO R 90

Participant Name ______________________________ Exam Date ______________

Record the symbols “P” for passing or “F” for failing on each step of the checklist.

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How is a sample obtained from a conveyor belt using Method A?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Stop the belt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Set the sampling template on belt, avoiding intrusion of adjacent material.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. All the material is removed from belt including all fines.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Take at least approximately three equal increments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. How is a sample obtained from a conveyor belt using Method B?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Pass the sampling device through a full stream of material as it runs off the end of the belt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. The device must be passed through at least twice (once in each direction).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. How is a sample obtained from a Transport Unit?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Divide the unit into four quadrants.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Dig 0.3 m (1 ft.) below surface.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Obtain an increment from each quadrant.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Describe the procedure for sampling from roadways Method A (Berm or Windrow).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Sample before spreading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Sample the material full depth without obtaining underlying material.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Take at least three approximately equal increments.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OVER
5. Describe the procedure for sampling from roadway Method B (In-place).
 a. Sample after spreading, before compaction.
 b. Sample the material full depth without obtaining underlying material.
 c. Take at least three approximately equal increments.

6. Describe the procedure for sampling a stockpile Method A (Loader Sampling).
 a. Loader removes contaminate and creates sampling pile.
 b. Loader back drags pile to create a flat surface.
 c. Divide the flat surface into four quadrants.
 d. Take an approximately equal increment from each quadrant, excluding the underlying material.

7. Describe the procedure for sampling a stockpile Method B (Stockpile Face Sampling).
 a. Create horizontal surfaces with vertical faces with a shovel.
 b. At least one increment taken from each of the top, middle, and bottom thirds of the stockpile.

8. Describe the procedure for sampling a stockpile Method C – Alternate Tube Method (Fine Aggregate).
 a. Remove the outer layer of segregated material.
 b. Obtain increments from at least five locations.

9. After obtaining the increments what should you do before performing R 76?
 a. Increments mixed thoroughly to form sample.

Comments: First attempt: Pass____Fail_____ Second attempt: Pass____Fail_____

Examiner Signature ______________________ WAQTC #:_____________________

18_R90_pr_oral_18 Aggregate 3-14 Pub. October 2020
Significance

Aggregates and other materials sampled in the field in accordance with AASHTO R 90 are large composites and need to be reduced to the appropriate size for testing. It is extremely important that the procedure used to reduce the field sample not modify the material.

Scope

This procedure covers the reduction of samples to the appropriate size for testing in accordance with AASHTO R 76-16. Techniques are used that minimize variations in characteristics between test samples and field samples. Method A (Mechanical Splitter) and Method B (Quartering) are covered.

This FOP applies to fine aggregate (FA), coarse aggregate (CA), and mixes of the two (FA/CA) and may also be used on soils.

Apparatus

Method A – Mechanical Splitter

Splitter chutes:

- Even number of equal width chutes
- Discharge alternately to each side
- Minimum of 8 chutes total for CA and FA / CA, 12 chutes total for FA
- Width:
 - Minimum 50 percent larger than largest particle
 - Maximum chute width of 19 mm (3/4 in.) for fine aggregate passing 9.5 mm (3/8 in.) sieve
- Feed control:
 - Hopper or straightedge pan with a width equal to or slightly less than the overall width of the assembly of chutes
- Capable of feeding the splitter at a controlled rate
- Splitter Receptacles / Pans:
- Capable of holding two halves of the sample following splitting

The splitter and accessory equipment shall be so designed that the sample will flow smoothly without restriction or loss of material.

Method B – Quartering

- Straightedge scoop, shovel, or trowel
- Broom or brush
- Canvas or plastic sheet, appropriate for the amount and size of the material being reduced

Method Selection

Samples of CA may be reduced by either Method A or Method B.

Samples of FA which are drier than the saturated surface dry (SSD) condition, as described in AASHTO T 84, shall be reduced by a mechanical splitter according to Method A. As a quick approximation, if the fine aggregate will retain its shape when molded with the hand, it is wetter than SSD.

Samples of FA / CA which are drier than SSD may be reduced by Method A or Method B.

Samples of FA that are at SSD or wetter than SSD shall be reduced by Method B, or the entire sample may be dried – using temperatures that do not exceed those specified for any of the tests contemplated – and then reduced to test sample size using Method A.
Table 1

<table>
<thead>
<tr>
<th></th>
<th>Drier than SSD</th>
<th>Wetter than SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Aggregate (FA)</td>
<td>Method A (Mechanical)</td>
<td>Method B (Quartering)</td>
</tr>
<tr>
<td>Mixture of FA/CA</td>
<td>Either Method</td>
<td>Method B (Quartering)</td>
</tr>
<tr>
<td>Coarse Aggregate (CA)</td>
<td>Either Method</td>
<td>Either Method</td>
</tr>
</tbody>
</table>

Procedure

Method A – Mechanical Splitter

1. Place two clean empty receptacles under the splitter.
2. Empty the sample into the hopper or pan without loss of material.
3. Uniformly distribute the material in the hopper or pan from edge to edge so that approximately equal amounts flow through each chute.
4. Discharge the material at a uniform rate, allowing it to flow freely through the chutes.
5. Remove any material retained on the surface of the splitter and place into the appropriate receptacle.
6. Using one of the two receptacles containing material, repeat Steps 1 through 6 until the material in one of the two receptacles is the appropriate sample size for the required test.
7. Retain and properly identify the remaining unused sample for further testing if required.

Mechanical Splitter Check

- Determine the mass of each reduced portion. If the percent difference of the two masses is greater than 5 percent, corrective action must be taken.
Calculation

\[
\frac{\text{Smaller Mass}}{\text{Larger Mass}} = \text{Ratio} \quad (1 - \text{Ratio}) \times 100 = \% \text{ Difference}
\]

Splitter check: 5127 g total sample mass
Splitter pan #1: 2583 g
Splitter pan #2: 2544 g

\[
\frac{2544 \text{ g}}{2583 \text{ g}} = 0.985 \quad (1 - 0.985) \times 100 = 1.5\%
\]

Alternative to Mechanical Splitter Check

- In lieu of determining the mass of each reduced portion, use the method illustrated in Figure 1 or 2 during reduction.

Figure 1

- Sample (S) is an amount greater than or equal to twice the mass needed for testing. Sample (S) is reduced in a mechanical splitter to yield parts (1) and (2).
- Part (1) is further reduced yielding (A) and (B) while part (2) is reduced to yield (B) and (A).
- Final testing sample is produced by combining alternate pans, i.e. A/A or B/B only.
Figure 2

Sample (S) is an amount greater or equal to twice the mass needed for testing. Sample (S) is reduced in a mechanical splitter to yield parts (1) and (2).

Part (1) is further reduced, yielding (A) and (B).

Switch pans (A) and (B) so that they are now in the opposite sides of the mechanical splitter, leaving the material from Part (1) in the pans. Reduce part (2) into pans (A) and (B).

Method B – Quartering

Use either of the following two procedures or a combination of both.

Procedure 1: Quartering on a clean, hard, level surface:

1. Place the sample on a hard, clean, level surface where there will be neither loss of material nor the accidental addition of foreign material.

2. Mix the material thoroughly by turning the entire sample over a minimum of four times. With the last turning, shovel the entire sample into a conical pile by depositing each shovelful on top of the preceding one.

3. Flatten the conical pile to a uniform thickness and diameter by pressing down with a shovel. The diameter should be four to eight times the thickness.

4. Divide the flattened pile into four approximately equal quarters with a shovel or trowel.

5. Remove two diagonally opposite quarters, including all fine material, and brush the cleared spaces clean.
6. Successively mix and quarter the remaining material until the sample is reduced to the desired size.

7. The final test sample consists of two diagonally opposite quarters.

Procedure 2: Quartering on a canvas or plastic sheet:

1. Place the sample on the sheet.

2. Mix the material thoroughly a minimum of four times by pulling each corner of the sheet horizontally over the sample toward the opposite corner. After the last turn, form a conical pile.

3. Flatten the conical pile to a uniform thickness and diameter by pressing down with a shovel. The diameter should be four to eight times the thickness.

4. Divide the flattened pile into four approximately equal quarters with a shovel or trowel, or insert a stick or pipe beneath the sheet and under the center of the pile, then lift both ends of the stick, dividing the sample into two roughly equal parts. Remove the stick, leaving a fold of the sheet between the divided portions. Insert the stick under the center of the pile at right angles to the first division and again lift both ends of the stick, dividing the sample into four roughly equal quarters.

5. Remove two diagonally opposite quarters, being careful to clean the fines from the sheet.

6. Successively mix and quarter the remaining material until the sample size is reduced to the desired size.

7. The final test sample consists of two diagonally opposite quarters.
Tips!

- Remember, the reduced sample must be representative of the whole.
- Method A – mechanical splitter – is preferred.
- Method A cannot be used for FA wetter than SSD condition.
- Keep the mechanical splitter dry to avoid having particles “stick” to it.
- Make sure your splitter is level.
REVIEW QUESTIONS

1. When using the mechanical splitter for FA, the minimum width of the individual chutes should be approximately how much larger than the largest particles in the sample to be split?

2. What is the maximum width of the chute for material passing the 9.5 mm (3/8 in) sieve?

3. How does the moisture content of the sample influence reduction?

4. Define the SSD condition.

5. Describe two methods of mixing the sample.
PERFORMANCE EXAM CHECKLIST

REDUCING FIELD SAMPLES OF AGGREGATE TO TESTING SIZE

FOP FOR AASHTO R 76

<table>
<thead>
<tr>
<th>Participant Name ______________________________</th>
<th>Exam Date ______________</th>
</tr>
</thead>
</table>

Record the symbols “P” for passing or “F” for failing on each step of the checklist.

Trial 1 Trial 2

Method A - Splitting

1. Chutes appropriate size and number? _____ _____
2. Material spread uniformly on feeder? _____ _____
3. Rate of feed slow enough so that sample flows freely through chutes? _____ _____
4. Material in one pan re-split until desired mass is obtained? _____ _____
5. Mechanical splitter checked or alternative used? _____ _____

Method B - Quartering

1. Sample placed on clean, hard, and level surface? _____ _____
2. Mixed by turning over 4 times with shovel or by pulling sheet horizontally over pile? _____ _____
3. Conical pile formed without loss of material? _____ _____
4. Pile flattened to uniform thickness and diameter? _____ _____
5. Diameter equal to about 4 to 8 times thickness? _____ _____
6. Divided into 4 equal portions with shovel or trowel without loss of material? _____ _____
7. Two diagonally opposite quarters, including all fine material, removed? _____ _____
8. Process continued until desired sample size is obtained when two opposite quarters combined? _____ _____

The sample may be placed upon a sheet and a stick or pipe may be placed under the sheet to divide the pile into quarters.

Comments:

<table>
<thead>
<tr>
<th>First attempt: Pass Fail</th>
<th>Second attempt: Pass Fail</th>
</tr>
</thead>
</table>

| Comments: |

| examiner signature: ___________________________ | WAQTC #: ____________________ |

21_R76_pr_20

Aggregate 4-11

Pub. October 2020
TOTAL EVAPORABLE MOISTURE CONTENT OF AGGREGATE BY DRYING FOP FOR AASHTO T 255

Significance
The amount of water contained in many materials influences design and construction practices. Road bases are difficult to compact if they are too dry or too wet. If too dry, water must be added, and the amount to be added depends on how much is already present.

Portland cement concrete (PCC) mix design must be adjusted to account for moisture present in aggregate. Careful determination of water content is crucial to many construction materials.

Scope
This procedure covers the determination of moisture content of aggregate in accordance with AASHTO T 255-00. It may also be used for other construction materials.

Overview
Moisture content is determined by comparing the wet mass of a sample and the mass of the sample after drying to constant mass. The term constant mass is used to define when a sample is dry.

Constant mass – the state at which a mass does not change more than a given percent, after additional drying for a defined time interval, at a required temperature.

Apparatus
- Balance or scale: Capacity sufficient for the principle sample mass, accurate to 0.1 percent of sample mass or readable to 0.1 g, meeting the requirements of AASHTO M 231
- Containers: clean, dry and capable of being sealed
• Microwave safe container with ventilated lid
• Heat source, controlled
 - Forced draft oven
 - Ventilated Oven
 - Convection oven
• Heat source, uncontrolled
 - Infrared heater, hot plate, fry pan, or any other device/method that will dry the sample without altering the material being dried
 - Microwave oven (900 watts minimum)
• Hot pads or gloves
• Utensils, such as spoons

Sample Preparation

In accordance with the FOP for AASHTO R 90 obtain a representative sample in its existing condition. The representative sample size is based on Table 1 or other information that may be specified by the agency.
TABLE 1

Sample Sizes for Moisture Content of Aggregate

<table>
<thead>
<tr>
<th>Nominal Maximum Size* (mm (in.))</th>
<th>Minimum Sample Mass (g (lb))</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 (6)</td>
<td>50,000 (110)</td>
</tr>
<tr>
<td>100 (4)</td>
<td>25,000 (55)</td>
</tr>
<tr>
<td>90 (3 1/2)</td>
<td>16,000 (35)</td>
</tr>
<tr>
<td>75 (3)</td>
<td>13,000 (29)</td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>10,000 (22)</td>
</tr>
<tr>
<td>50 (2)</td>
<td>8000 (18)</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>6000 (13)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>4000 (9)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>3000 (7)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>2000 (4)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>1500 (3.3)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>500 (1.1)</td>
</tr>
</tbody>
</table>

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum.

13 Immediately seal or cover samples to prevent any change in moisture content or follow the steps in “Procedure.”

Procedure

Determine and record all masses to the nearest 0.1 percent of the sample mass or to the nearest 0.1 g.

When determining the mass of hot samples or containers or both, place and tare a buffer between the sample container and the balance. This will eliminate damage to or interfere with the operation of the balance or scale.

1. Determine and record the mass of the container (and lid for microwave drying).

2. Place the wet sample in the container:
 a. For oven(s), hot plates, infrared heaters, etc.: Spread the sample in the container.
 b. For microwave oven: Heap sample in the container; cover with ventilated lid.

3. Determine record the total mass of the container and wet sample.
4. Determine and record the wet mass of the sample (M_W) by subtracting the container mass as determined in Step 1 from the mass of the container and sample in Step 3.

5. Place the sample in one of the following drying apparatus:
 a. Controlled heat source (oven): at $110 \pm 5^\circ$C ($230 \pm 9^\circ$F).
 b. Uncontrolled heat source (Hot plate, infrared heater, etc.): Stir frequently to avoid localized overheating.

6. Dry until sample appears moisture free.

7. Determine mass of sample and container.

8. Determine and record the mass of the sample by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 7.

9. Return sample and container to the heat source for additional drying.
 a. Controlled (oven): 30 minutes
 b. Uncontrolled (Hot plate, infrared heater, etc.): 10 minutes
 c. Uncontrolled (Microwave oven): 2 minutes

Caution: Some minerals in the sample may cause the aggregate to overheat, altering the aggregate gradation.
10. Determine mass of sample and container.

11. Determine and record the mass of the sample by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 10.

12. Determine percent change by subtracting the new mass determination (M_n) from the previous mass determination (M_p) divide by the previous mass determination (M_p) multiply by 100.

13. Continue drying, performing steps 9 through 12, until there is less than a 0.10 percent change after additional drying time.

14. Constant mass has been achieved; sample is defined as dry.

15. Allow the sample to cool. Determine and record the total mass of the container and dry sample.

16. Determine and record the dry mass of the sample (M_D) by subtracting the mass of the container determined in Step 1 from the mass of the container and sample determined in Step 15.

17. Determine and record percent moisture (w) by subtracting the final dry mass determination (M_D) from the initial wet mass determination (M_W) divide by the final dry mass determination (M_D) multiply by 100.
Table 2
Methods of Drying

<table>
<thead>
<tr>
<th>Heat Source</th>
<th>Specific Instructions</th>
<th>Drying intervals to achieve constant mass (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forced Draft Oven (preferred), Ventilated Oven, or Convection Oven</td>
<td>110 ±5°C (230 ±9°F)</td>
<td>30</td>
</tr>
<tr>
<td>Uncontrolled:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot plate, Infrared heater, etc.</td>
<td>Stir frequently</td>
<td>10</td>
</tr>
<tr>
<td>Microwave</td>
<td>Heap sample and cover with ventilated lid</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculation
Constant Mass:

Calculate constant mass using the following formula:

\[
\% \text{ Change} = \frac{M_p - M_n}{M_p} \times 100
\]

Where:

\(M_p \) = previous mass measurement
\(M_n \) = new mass measurement

Example:

Mass of container: 1232.1 g
Mass of container after first drying cycle: 2637.2 g
Mass, \(M_p \), of possibly dry sample: 2637.2 g - 1232.1 g = 1405.1 g
Mass of container and sample after second drying cycle: 2634.1 g
Mass, \(M_n \), of sample: 2634.1 g - 1232.1 g = 1402.0 g

\[
\% \text{ Change} = \frac{1405.1 \text{ g} - 1402.0 \text{ g}}{1405.1 \text{ g}} \times 100 = 0.22\%
\]

0.22 percent is not less than 0.10 percent, so continue drying
Mass of container and sample after third drying cycle: 2633.0 g
Mass, Mₙ, of sample: 2633.0 g - 1232.1 g = 1400.9 g

\[
\% \text{ Change} = \frac{1402.0 \text{ g} - 1400.9 \text{ g}}{1402.0 \text{ g}} \times 100 = 0.08\%
\]

0.08 percent is less than 0.10 percent so constant mass has been reached

Moisture Content:

Calculate the moisture content, w, as a percent, using the following formula:

\[
w = \frac{Mₘ - Mₖ}{Mₖ} \times 100
\]

where:

\[
w \quad = \quad \text{moisture content, percent}
\]
\[
Mₘ \quad = \quad \text{wet mass}
\]
\[
Mₖ \quad = \quad \text{dry mass}
\]

Example:

Mass of container: 1232.1 g
Mass of container and wet sample: 2764.7 g
Mass, Mₘ, of wet sample: 2764.7 g - 1232.1 g = 1532.6 g
Mass of container and dry sample (COOLED): 2633.5 g
Mass, Mₖ, of dry sample: 2633.5 g - 1232.1 g = 1401.4 g

\[
w = \frac{1532.6 \text{ g} - 1401.4 \text{ g}}{1401.4 \text{ g}} \times 100 = \frac{131.7 \text{ g}}{1401.4 \text{ g}} = 9.40\% \text{ report 9.4%}
\]
Report

- On forms approved by the agency
- Sample ID
- M_W, wet mass
- M_D, dry mass
- Moisture content to the nearest 0.1 percent

Tips!

- Let sample cool before determining final dry mass.
- Divide by M_D, not M_W.
REVIEW QUESTIONS

1. What extra care should be taken when using a microwave to dry aggregates?

2. What are the maximum temperatures that a sample should be allowed to attain when using the various types of ovens?

3. How is “constant mass” defined according to this FOP?

4. What is the maximum weight loss, in grams, that would still constitute constant mass for a 2180 g sample?
PERFORMANCE EXAM CHECKLIST

TOTAL MOISTURE CONTENT OF AGGREGATE BY DRYING

FOP FOR AASHTO T 255

Participant Name ______________________________ Exam Date ______________

Record the symbols “P” for passing or “F” for failing on each step of the checklist.

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Representative sample of appropriate mass obtained?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>2. Mass of container determined to 0.1 percent or 0.1 g?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>3. Sample placed in container and wet mass determined to 0.1 percent or 0.1 g?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>4. Test sample mass conforms to the required mass?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>5. Loss of moisture avoided prior to mass determination?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>6. Sample dried by a suitable heat source?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>7. If aggregate heated by means other than a controlled oven, is sample stirred to avoid localized overheating?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>8. If heated in a microwave, heaped and covered with a ventilated lid</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>9. Is aggregate heated for the additional, specified time?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>a. Forced draft, ventilated, convection ovens – 30 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Microwave – 2 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Other – 10 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Mass determined and compared to previous mass – showing less than 0.10 percent loss?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>11. Sample cooled before dry mass determination to 0.1 percent or 0.1 g?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>12. Calculations performed properly, and results reported to the nearest 0.1 percent?</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

Comments: First attempt: Pass____ Fail____ Second attempt: Pass____ Fail____

Examiner Signature ___________________________ WAQTC #: ______________
SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES
FOP FOR AASHTO T 27
MATERIALS FINER THAN 75 µM (NO. 200) SIEVE IN MINERAL AGGREGATE
BY WASHING
FOP FOR AASHTO T 11

Significance

Sieve analyses are performed on aggregates used in roadway bases and in Portland cement concrete and asphalt mixtures. Sieve analyses reveal the size makeup of aggregate particles – from the largest to the smallest. A gradation curve or chart showing how evenly or unevenly the sizes are distributed between largest and smallest is created in this test. How an aggregate is graded has a major impact on the strength of the base or on the properties and performance of concrete. In Portland cement concrete (PCC), for example, gradation influences shrinkage and shrinkage cracking, workability, and other characteristics.

Generally, well-graded material having an even distribution of particle sizes will have better load handling properties than poorly graded material consisting of a few size classes. Although other characteristics of aggregates contribute to its strength, the better a material is graded the less material will be needed.

Scope

A sieve analysis, or ‘gradation,’ measures distribution of aggregate particle sizes within a given sample.

Accurate determination of the amount of material smaller than 75 µm (No. 200) cannot be made using just AASHTO T 27. If quantifying this material is required, use AASHTO T 11 in conjunction with AASHTO T 27.

This FOP covers sieve analysis in accordance with AASHTO T 27-20 and materials finer than 75 µm (No. 200) in accordance with AASHTO T 11-20 performed in conjunction with AASHTO T 27. The procedure includes three methods: A, B, and C.
Apparatus

- **Balance or scale:** Capacity sufficient for the masses shown in Table 1, accurate to 0.1 percent of the sample mass or readable to 0.1 g, meeting the requirements of AASHTO M 231
- **Sieves:** Meeting the requirements of ASTM E11
- **Mechanical sieve shaker:** Meeting the requirements of AASHTO T 27
- **Suitable drying equipment (refer to FOP for AASHTO T 255)**
- **Containers and utensils:** A pan or vessel of sufficient size to contain the sample when covered with water and permit vigorous agitation without loss of material or water
- **Optional**
 - Mechanical washing device
 - Mallet: With a rubber or rawhide head having a mass of 0.57 ±0.23 kg (1.25 ±0.5 lb)

Sample Sieving

- In all procedures, the sample is shaken in nested sieves. Sieves are selected to furnish information required by specification. Intermediate sieves are added for additional information or to avoid overloading sieves, or both.
- **Sieves** are nested in order of increasing size from the bottom to the top, and the sample, or a portion of the sample, is placed on the top sieve.
- The loaded sieves are shaken in a mechanical shaker for approximately 10 minutes, refer to Annex A, Time Evaluation.
- Care must be taken so that sieves are not overloaded, refer to Annex B, Overload Determination. The sample may be sieved in increments and the mass retained for each sieve added together from each sample increment to avoid overloading sieves.
Sample Preparation

Obtain samples according to the FOP for AASHTO \textit{R} 90 and reduce to sample size shown in Table 1 according to the FOP for AASHTO \textit{R} 76.

Sample Sizes for Aggregate Gradation Test

<table>
<thead>
<tr>
<th>Size* mm (in.)</th>
<th>Minimum Mass g (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 (5)</td>
<td>300,000 (660)</td>
</tr>
<tr>
<td>100 (4)</td>
<td>150,000 (330)</td>
</tr>
<tr>
<td>90 (3 1/2)</td>
<td>100,000 (220)</td>
</tr>
<tr>
<td>75 (3)</td>
<td>60,000 (130)</td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>35,000 (77)</td>
</tr>
<tr>
<td>50 (2)</td>
<td>20,000 (44)</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>15,000 (33)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>10,000 (22)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>5000 (11)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>2000 (4)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>1000 (2)</td>
</tr>
<tr>
<td>6.3 (1/4)</td>
<td>1000 (2)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>500 (1)</td>
</tr>
</tbody>
</table>

*Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps between specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Sample sizes in Table 1 are standard for aggregate sieve analysis, due to equipment restraints samples may need to be divided into several “subsamples.” For example, a gradation that requires 100 kg (220 lbs.) of material would not fit into a large tray shaker all at once.

Some agencies permit reduced sample sizes if it is proven that doing so is not detrimental to the test results. Some agencies require larger sample sizes. Check agency guidelines for required or permitted sample sizes.
Selection of Procedure
Agencies may specify which method to perform. If a method is not specified, perform Method A.

Overview

Method A
- Determine original dry mass of the sample
- Wash over a 75 µm (No. 200) sieve
- Determine dry mass of washed sample
- Sieve washed sample
- Calculate and report percent retained and passing each sieve

Method B
- Determine original dry mass of the sample
- Wash over a 75 µm (No. 200) sieve
- Determine dry mass of washed sample
- Sieve sample through coarse sieves, 4.75 mm (No. 4) sieves and larger
- Determine mass of fine material, minus 4.75 mm (No. 4)
- Reduce fine material
- Determine mass of reduced portion
- Sieve reduced portion
- Calculate and report percent retained and passing each sieve

Method C
- Determine original dry mass of the sample
- Sieve sample through coarse sieves, 4.75 mm (No. 4) sieves and larger
- Determine mass of fine material, minus 4.75 mm (No. 4)
- Reduce fine material
- Determine dry mass of reduced portion
- Wash reduced portion over a 75µm (No. 200) sieve
• Determine dry mass of washed reduced portion
• Sieve washed reduced portion
• Calculate and report percent retained and passing each sieve

Procedure Method A

1. Dry the sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the original dry mass of the sample to the nearest 0.1 percent or 0.1 g. Designate this mass as M.

 When the specification does not require the amount of material finer than 75 µm (No. 200) be determined by washing, skip to Step 11.

2. Nest a sieve, such as a 2.0 mm (No. 10), above the 75 µm (No. 200) sieve.

3. Place the sample in a container and cover with water.

 Note 1: A detergent, dispersing agent, or other wetting solution may be added to the water to assure a thorough separation of the material finer than the 75 µm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.

4. Agitate vigorously to ensure complete separation of the material finer than 75 µm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. Avoid degradation of the sample when using a mechanical washing device.

 Note 2: Washing longer than 10 minutes in a mechanical washer has been shown to cause significant amounts of degradation depending upon aggregate type.

5. Immediately pour the wash water containing the suspended material over the nested sieves; be careful not to pour out the coarser particles or over fill the 75 µm (No. 200) sieve.

6. Add water to cover material remaining in the container, agitate, and repeat Step 5. Continue until the wash water is reasonably clear.
7. Remove the upper sieve and return material retained to the washed sample.

8. Rinse the material retained on the 75 µm (No. 200) sieve until water passing through the sieve is reasonably clear and detergent or dispersing agent is removed, if used.

9. Return all material retained on the 75 µm (No. 200) sieve to the container by rinsing into the washed sample.

Note 3: Excess water may be carefully removed with a bulb syringe, the removed water must be discharged back over the 75 µm (No. 200) sieve to prevent loss of fines.

10. Dry the washed sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the dry mass of the sample.

11. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 75 µm (No. 200).

12. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker, if not place sieves in mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

Note 4: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

13. Determine and record the individual or cumulative mass retained for each sieve. Ensure that all material trapped in full openings of the sieve are cleaned out and included in the mass retained.

Note 5: For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.

Note 6: In the case of coarse / fine aggregate mixtures, distribute the minus 4.75 mm (No. 4) among two or more sets of sieves to prevent overloading of individual sieves.
14. Perform the Check Sum calculation – Verify the total mass after sieving agrees with the dry mass before sieving within 0.3 percent. The dry mass before sieving is the dry mass after wash or the original dry mass \((M)\) if performing the sieve analysis without washing. Do not use test results for acceptance if the Check Sum result is greater than 0.3 percent.

15. Calculate the total percentages passing, and the individual or cumulative percentages retained to the nearest 0.1 percent by dividing the individual sieve masses or cumulative sieve masses by the original dry mass \((M)\) of the sample.

16. Report total percent passing to 1 percent except report the 75 \(\mu\)m (No. 200) sieve to 0.1 percent.

Method A Calculation

Check Sum

\[
\text{Check sum} = \frac{\text{dry mass before sieving} - \text{total mass after sieving}}{\text{dry mass before sieving}} \times 100
\]

Percent Retained

\[
\text{IPR} = \frac{\text{IMR}}{M} \times 100 \quad \text{or} \quad \text{CPR} = \frac{\text{CMR}}{M} \times 100
\]

Where:

- IPR = Individual Percent Retained
- CPR = Cumulative Percent Retained
- \(M\) = Original dry mass of the sample
- IMR = Individual Mass Retained
- CMR = Cumulative Mass Retained
Percent Passing (PP)

\[PP = PPP - IPR \quad \text{or} \quad PP = 100 - CPR \]

Where:

- PP = Percent Passing
- PPP = Previous Percent Passing

Method A Example Individual Mass Retained

Original dry mass of the sample \((M)\):
- 5168.7 g

Dry mass of sample after washing:
- 4911.3 g

Total mass after sieving equals

- Sum of Individual Masses Retained (IMR), including minus 75 µm (No. 200) in the pan:
 - 4905.9 g

Amount of 75 µm (No. 200) minus washed out \((5168.7 \text{ g} - 4911.3 \text{ g})\):
- 257.4 g

Check Sum

\[
\text{Check Sum} = \frac{4911.3 \text{ g} - 4905.9 \text{ g}}{4911.3 \text{ g}} \times 100 = 0.1\%
\]

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Individual Percent Retained (IPR) for 9.5 mm (3/8 in.) sieve:

\[
IPR = \frac{619.2 \text{ g}}{5168.7 \text{ g}} \times 100 = 12.0\%
\]

Percent Passing (PP) 9.5 mm (3/8 in.) sieve:

\[
PP = 86.0\% - 12.0\% = 74.0\%
\]

Reported Percent Passing = 74%
Method A Individual Gradation on All Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Individual Mass Retained g (IMR)</th>
<th>Determine IPR Divide IMR by (M) and multiply by 100</th>
<th>Individual Percent Retained (IPR)</th>
<th>Determine PP by subtracting IPR from Previous PP</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.0 (3/4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100.0 − 14.0 = 86.0</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>724.7</td>
<td>(\frac{724.7}{5168.7} \times 100 = 14.0)</td>
<td>14.0</td>
<td>100.0 − 14.0 = 86.0</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>619.2</td>
<td>(\frac{619.2}{5168.7} \times 100 = 12.0)</td>
<td>12.0</td>
<td>86.0 − 12.0 = 74.0</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1189.8</td>
<td>(\frac{1189.8}{5168.7} \times 100 = 23.0)</td>
<td>23.0</td>
<td>74.0 − 23.0 = 51.0</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>877.6</td>
<td>(\frac{877.6}{5168.7} \times 100 = 17.0)</td>
<td>17.0</td>
<td>51.0 − 17.0 = 34.0</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>1.18 (No. 16)</td>
<td>574.8</td>
<td>(\frac{574.8}{5168.7} \times 100 = 11.1)</td>
<td>11.1</td>
<td>34.0 − 11.1 = 22.9</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>0.600 (No. 30)</td>
<td>329.8</td>
<td>(\frac{329.8}{5168.7} \times 100 = 6.4)</td>
<td>6.4</td>
<td>22.9 − 6.4 = 16.5</td>
<td>16.5</td>
<td>17</td>
</tr>
<tr>
<td>0.300 (No. 50)</td>
<td>228.5</td>
<td>(\frac{228.5}{5168.7} \times 100 = 4.4)</td>
<td>4.4</td>
<td>16.5 − 4.4 = 12.1</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>0.150 (No. 100)</td>
<td>205.7</td>
<td>(\frac{205.7}{5168.7} \times 100 = 4.0)</td>
<td>4.0</td>
<td>12.1 − 4.0 = 8.1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>135.4</td>
<td>(\frac{135.7}{5168.7} \times 100 = 2.6)</td>
<td>2.6</td>
<td>8.1 − 2.6 = 5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Total mass after sieving: sum of sieves + mass in the pan = 4905.9 g

Original dry mass of the sample \((M) \): 5168.7 g

* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Method A Example Cumulative Mass Retained

Original dry mass of the sample \((M)\): 5168.7 g
Dry mass of the sample after washing: 4911.3 g

Total mass after sieving equals Final Cumulative Mass Retained (FCMR) (includes minus 75 µm (No. 200) from the pan): 4905.9 g

Amount of 75µm (No. 200) minus washed out \((5168.7 \text{ g} - 4911.3 \text{ g})\): 257.4 g

Check Sum

\[
Check \, Sum = \frac{4911.3 \text{ g} - 4905.9 \text{ g}}{4911.3 \text{ g}} \times 100 = 0.1\%
\]

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Cumulative Percent Retained (CPR) for 9.5 mm (3/8 in.) sieve:

\[
CPR = \frac{1343.9 \text{ g}}{5168.7 \text{ g}} \times 100 = 26.0\%
\]

Percent Passing (PP) 9.5 mm (3/8 in.) sieve:

\[
PP = 100.0\% - 26.0\% = 74.0\%
\]

Reported Percent Passing = 74%
<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>Cumulative Mass Retained (g) (CMR)</th>
<th>Determine CPR</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Determine PP</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.0 (3/4)</td>
<td>0</td>
<td>724.7</td>
<td>14.0</td>
<td>100.0 − 14.0 =</td>
<td>86.0</td>
<td>86</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>724.7</td>
<td>$\frac{724.7}{5168.7} \times 100$</td>
<td>26.0</td>
<td>100.0 − 26.0 =</td>
<td>74.0</td>
<td>74</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>1343.9</td>
<td>$\frac{1343.9}{5168.7} \times 100$</td>
<td>49.0</td>
<td>100.0 − 49.0 =</td>
<td>51.0</td>
<td>51</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>2533.7</td>
<td>$\frac{2533.7}{5168.7} \times 100$</td>
<td>66.0</td>
<td>100.0 − 66.0 =</td>
<td>34.0</td>
<td>34</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>3411.3</td>
<td>$\frac{3411.3}{5168.7} \times 100$</td>
<td>77.1</td>
<td>100.0 − 77.1 =</td>
<td>22.9</td>
<td>23</td>
</tr>
<tr>
<td>1.18 (No. 16)</td>
<td>3986.1</td>
<td>$\frac{3986.1}{5168.7} \times 100$</td>
<td>83.5</td>
<td>100.0 − 83.5 =</td>
<td>16.5</td>
<td>17</td>
</tr>
<tr>
<td>0.600 (No. 30)</td>
<td>4315.9</td>
<td>$\frac{4315.9}{5168.7} \times 100$</td>
<td>87.9</td>
<td>100.0 − 87.9 =</td>
<td>12.1</td>
<td>12</td>
</tr>
<tr>
<td>0.300 (No. 50)</td>
<td>4544.4</td>
<td>$\frac{4544.4}{5168.7} \times 100$</td>
<td>91.9</td>
<td>100.0 − 91.9 =</td>
<td>8.1</td>
<td>8</td>
</tr>
<tr>
<td>0.150 (No. 100)</td>
<td>4750.1</td>
<td>$\frac{4750.1}{5168.7} \times 100$</td>
<td>94.5</td>
<td>100.0 − 94.5 =</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>4885.5</td>
<td>$\frac{4885.5}{5168.7} \times 100$</td>
<td>99.5</td>
<td>100.0 − 99.5 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCMR</td>
<td>4905.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total mass after sieving: 4905.9 g

Original dry mass of the sample (M): 5168.7 g

* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Procedure Method B

1. Dry the sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the original dry mass of the sample to the nearest 0.1 percent or 0.1 g. Designate this mass as M.

When the specification does not require the amount of material finer than 75 µm (No. 200) be determined by washing, skip to Step 11.

2. Nest a protective sieve, such as a 2.0 mm (No. 10), above the 75 µm (No. 200) sieve.

3. Place the sample in a container and cover with water.

 Note 1: A detergent, dispersing agent, or other wetting solution may be added to the water to assure a thorough separation of the material finer than the 75 µm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.

4. Agitate vigorously to ensure complete separation of the material finer than 75 µm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. Avoid degradation of the sample when using a mechanical washing device.

 Note 2: Washing longer than 10 minutes in a mechanical washer has been shown to cause significant amounts of degradation depending upon aggregate type.

5. Immediately pour the wash water containing the suspended material over the nested sieves; be careful not to pour out the coarser particles.

6. Add water to cover material remaining in the container, agitate, and repeat Step 5. Continue until the wash water is reasonably clear.

7. Remove the upper sieve and return material retained to the washed sample or over fill the 75 µm (No. 200) sieve.

8. Rinse the material retained on the 75 µm (No. 200) sieve until water passing through the sieve is reasonably clear and detergent or dispersing agent is removed, if used.
9. Return all material retained on the 75 µm (No. 200) sieve to the container by rinsing into the washed sample.

Note 3: Excess water may be carefully removed with a bulb syringe; the removed water must be discharged back over the 75 µm (No. 200) sieve to prevent loss of fines.

10. Dry the washed sample to constant mass according to the FOP for AASHTO T 255.

 Cool to room temperature. Determine and record the dry mass after wash.

11. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 4.75 mm (No. 4).

12. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker, if not place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, time determined by Annex A).

Note 4: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

13. Determine and record the individual or cumulative mass retained for each sieve. Ensure that all particles trapped in full openings of the sieve are removed and included in the mass retained.

Note 5: For sieves No. 4 and larger, check material trapped in less than a full opening by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.

14. Determine and record the mass of the minus 4.75 mm (No. 4) material in the pan. Designate this mass as \(M_1 \).

15. Perform the *Coarse Check Sum* calculation – Verify the total mass after coarse sieving agrees with the dry mass before sieving to within 0.3 percent. The dry mass before sieving is the dry mass after wash or the original dry mass \(M \) if performing the sieve analysis without washing. Do not use test
results for acceptance if the Check Sum result is greater than 0.3 percent.

16. Reduce the minus 4.75 mm (No. 4) according to the FOP for AASHTO R 76 to produce a sample with a minimum mass of 500 g. Determine and record the mass of the minus 4.75 mm (No. 4) split, designate this mass as M_2.

17. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 75 µm (No. 200) up to, but not including, the 4.75 mm (No. 4) sieve.

18. Place the sample portion on the top sieve and place the sieves in the mechanical shaker. Shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

19. Determine and record the individual or cumulative mass retained for each sieve and in the pan. Ensure that all particles trapped in full openings of the sieve are removed and included in the mass retained.

Note 6: For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft hair bristle for smaller sieves.

20. Perform the Fine Check Sum calculation – Verify the total mass after sieving agrees with the dry mass before sieving (M_2) to within 0.3 percent. Do not use test results for acceptance if the Check Sum result is greater than 0.3 percent.

21. Calculate to the nearest 0.1 percent, the Individual Mass Retained (IMR) or Cumulative Mass Retained (CMR) of the size increment of the reduced sample and the original sample.

22. Calculate the total percent passing.
23. Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.

Method B Calculations

Check Sum

\[
\text{Coarse check sum} = \frac{\text{dry mass before sieving} - \text{total mass after coarse sieving}}{\text{dry mass before sieving}} \times 100
\]

\[
\text{Fine check sum} = \frac{M_2 - \text{total mass after fine sieving}}{M_2} \times 100
\]

Percent Retained for 4.75 mm (No. 4) and larger

\[
IPR = \frac{IMR}{M} \times 100 \quad \text{or} \quad CPR = \frac{CMR}{M} \times 100
\]

Where:

- **IPR** = Individual Percent Retained
- **CPR** = Cumulative Percent Retained
- **M** = Original dry mass of the sample
- **IMR** = Individual Mass Retained
- **CMR** = Cumulative Mass Retained

Percent Passing (PP) for 4.75 mm (No. 4) and larger

\[
PP = PPP - IPR \quad \text{or} \quad PP = 100 - CPR
\]

Where:

- **PP** = Percent Passing
- **PPP** = Previous Percent Passing
Minus 4.75mm (No. 4) adjustment factor (R)

The mass of material retained for each sieve is multiplied by the adjustment factor, the total mass of the minus 4.75 mm (No. 4) from the pan, M_1, divided by the mass of the reduced split of minus 4.75 mm (No. 4), M_2. For consistency, this adjustment factor is carried to three decimal places.

$$ R = \frac{M_1}{M_2} $$

where:

- R = minus 4.75 mm (No. 4) adjustment factor
- M_1 = total mass of minus 4.75 mm (No. 4) before reducing
- M_2 = mass of the reduced split of minus 4.75 mm (No. 4)

Adjusted Individual Mass Retained (AIMR):

$$ AIMR = R \times B $$

where:

- $AIMR$ = Adjusted Individual Mass Retained
- R = minus 4.75 mm (No. 4) adjustment factor
- B = individual mass of the size increment in the reduced portion sieved
Adjusted Cumulative Mass Retained (ACMR)

\[ACMR = (R \times B) + D \]

where:

ACMR = Adjusted Cumulative Mass Retained
R = minus 4.75 mm (No. 4) adjustment factor
B = cumulative mass of the size increment in the reduced portion sieved
D = cumulative mass of plus 4.75 mm (No. 4) portion of sample

Method B Example Individual Mass Retained

Dry mass of total sample, before washing: 3214.0 g
Dry mass of sample after washing: 3085.1 g
Total mass after sieving
Sum of Individual Masses Retained (IMR) including the minus 4.75 mm (No. 4) in the pan: 3085.0 g
Amount of 75 µm (No. 200) minus washed out (3214.0 g – 3085.1 g): 128.9 g

Coarse Check Sum

\[Coarse \ Check \ Sum = \frac{3085.1 \ g - 3085.0 \ g}{3085.1 \ g} \times 100 = 0.0\% \]

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Individual Percent Retained (IPR) for 9.5 mm (3/8 in.) sieve

\[IPR = \frac{481.4 \ g}{3214.0 \ g} \times 100 = 15.0\% \]

Percent Passing (PP) for 9.5 mm (3/8 in.) sieve:

\[PP = 95.0\% - 15.0\% = 80.0\% \]

Reported Percent Passing = 80%

Method B Individual Gradation on Coarse Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Individual Mass Retained g (IMR)</th>
<th>Determine IPR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Divide IMR by M and multiply by 100</td>
</tr>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>161.1</td>
<td>5.0</td>
</tr>
<tr>
<td>9.50 (3/8)</td>
<td>481.4</td>
<td>15.0</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>475.8</td>
<td>14.8</td>
</tr>
<tr>
<td>Minus 4.75 (No. 4)</td>
<td>1966.7 (M₁)</td>
<td></td>
</tr>
</tbody>
</table>

Percent Passing (PP)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Divide IMR by M and multiply by 100</td>
</tr>
<tr>
<td></td>
<td>Determine PP by subtracting IPR from Previous PP</td>
</tr>
<tr>
<td></td>
<td>Percent Passing (PP)</td>
</tr>
<tr>
<td>16.0 (5/8)</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>95.0</td>
</tr>
<tr>
<td>9.50 (3/8)</td>
<td>80.0</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>65.2</td>
</tr>
</tbody>
</table>

Total mass after sieving: sum of sieves + mass in the pan = 3085.0 g

Original dry mass of the sample (M): 3214.0 g
Fine Sample

The minus 4.75 mm (No. 4) from the pan, M_1 (1966.7 g), was reduced according to the FOP for AASHTO R 76, to at least 500 g. In this case, the reduced mass was determined to be **512.8 g**. This is M_2.

The reduced mass was sieved.

Total mass after sieving equals

$$\text{Sum of Individual Masses Retained (IMR) including minus 75 \mu m (No. 200) in the pan} = 511.8 \text{ g}$$

Fine Check Sum

$$\text{Fine Check Sum} = \frac{512.8 \text{ g} - 511.8 \text{ g}}{512.8 \text{ g}} \times 100 = 0.2\%$$

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Adjustment Factor (R) for Adjusted Individual Mass Retained (AIMR) on minus 4.75 (No. 4) sieves

The mass of material retained for each sieve is multiplied by the adjustment factor (R) carried to three decimal places.

$$R = \frac{M_1}{M_2} = \frac{1966.7 \text{ g}}{512.8 \text{ g}} = 3.835$$

where:

- R = minus 4.75 mm (No. 4) adjustment factor
- M_1 = total mass of minus 4.75 mm (No. 4) from the pan
- M_2 = mass of the reduced split of minus 4.75 mm (No. 4)

Each “individual mass retained” on the fine sieves must be multiplied by R to obtain the *Adjusted Individual Mass Retained*.
Adjusted Individual Mass Retained (AIMR) for 2.00 mm (No. 10) sieve

\[\text{AIMR} = 3.835 \times 207.1 \text{ g} = 794.2 \text{ g}\]

Individual Percent Retained (IPR) for 2.00 mm (No. 10) sieve:

\[\text{IPR} = \frac{794.2 \text{ g}}{3214.0 \text{ g}} \times 100 = 24.7\%\]

Percent Passing (PP) 2 mm (No. 10) sieve:

\[PP = 65.2\% - 24.7\% = 40.5\%\]

Reported Percent Passing = 41%

Method B Individual Gradation on Fine Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Individual Mass Retained g (IMR)</th>
<th>Determine TIMR Multiply IMR by (R \left(\frac{M_1}{M_2} \right))</th>
<th>Total Individual Mass Retained (TIMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00 (No. 10)</td>
<td>207.1</td>
<td>207.1 \times 3.835 =</td>
<td>794.2</td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>187.9</td>
<td>187.9 \times 3.835 =</td>
<td>720.6</td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>59.9</td>
<td>59.9 \times 3.835 =</td>
<td>229.7</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>49.1</td>
<td>49.1 \times 3.835 =</td>
<td>188.3</td>
</tr>
<tr>
<td>minus 0.075 (No. 200) in the pan</td>
<td>7.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total mass after sieving: sum of fine sieves + the mass in the pan = 511.8 g
Method B Individual
Final Gradation on All Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Total Individual Mass Retained g (TIMR)</th>
<th>Determine IPR Divide TIMR by M and multiply by 100</th>
<th>Individual Percent Retained (IPR)</th>
<th>Determine PP by subtracting IPR from Previous PP</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>161.1</td>
<td>5.0</td>
<td>100.0 − 5.0 = 95.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.50 (3/8)</td>
<td>481.4</td>
<td>15.0</td>
<td>95.0 − 15.0 = 80.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>475.8</td>
<td>14.8</td>
<td>80.0 − 14.8 = 65.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00 (No. 10)</td>
<td>794.2</td>
<td>24.7</td>
<td>65.2 − 24.7 = 40.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>720.6</td>
<td>22.4</td>
<td>40.5 − 22.4 = 18.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>229.7</td>
<td>7.1</td>
<td>18.1 − 7.1 = 11.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>188.3</td>
<td>5.9</td>
<td>11.0 − 5.9 = 5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minus 0.075 (No. 200) in the pan</td>
<td>29.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Original dry mass of the sample \((M)\): 3214.0 g

* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Method B Example Cumulative Mass Retained

Original dry mass of the sample \((M) \): 3214.0 g
Dry mass of sample after washing: 3085.1 g
Total mass after sieving
Cumulative Mass Retained (CMR) on the 4.75 (No. 4) plus the minus 4.75 mm (No. 4) in the pan: 3085.0 g
Amount of 75 µm (No. 200) minus washed out (3214.0 g – 3085.1 g): 128.9 g

Coarse Check Sum

\[
Coarse\ Check\ Sum = \frac{3085.1\ g - 3085.0\ g}{3085.1\ g} \times 100 = 0.0\%
\]

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Cumulative Percent Retained (CPR) for 9.5 mm (3/8 in.) sieve

\[
CPR = \frac{642.5\ g}{3214.0\ g} \times 100 = 20.0\%
\]

Percent Passing (PP) for 9.5 mm (3/8 in.) sieve

\[
PP = 100.0\% - 20.0\% = 80.0\%
\]

Reported Percent Passing = 80%
Method B Cumulative Gradation on Coarse Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained g (CMR)</th>
<th>Determine CPR by dividing CMR by M and multiplying by 100</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Determine PP by subtracting CPR from 100</th>
<th>Percent Passing (PP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>161.1</td>
<td>$\frac{161.1}{3214.0} \times 100 = 5.0$</td>
<td>100.0 – 5.0 = 95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.50 (3/8)</td>
<td>642.5</td>
<td>$\frac{642.5}{3214.0} \times 100 = 20.0$</td>
<td>100.0 – 20.0 = 80.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1118.3 (D)</td>
<td>$\frac{1118.3}{3214.0} \times 100 = 34.8$</td>
<td>100.0 – 34.8 = 65.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minus 4.75 (No. 4)</td>
<td>1966.7 (M1) in the pan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMR: 1118.3 + 1966.7 = 3085.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original dry mass of the sample (M): 3214.0 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fine Sample

The mass of minus 4.75 mm (No. 4) material in the pan, M_1 (1966.7 g), was reduced according to the FOP for AASHTO R 76, to at least 500 g. In this case, the reduced mass was determined to be **512.8 g**. This is M_2.

The reduced mass was sieved.

Total mass after fine sieving equals

Final Cumulative Mass Retained (FCMR) (includes minus 75 µm (No. 200) from the pan): 511.8 g
The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

The cumulative mass of material retained for each sieve is multiplied by the adjustment factor \(R \) carried to three decimal places and added to the cumulative mass retained on the 4.75 mm (No. 4) sieve, \(D \), to obtain the Adjusted Cumulative Mass Retained (ACMR).

Adjustment factor \(R \) for Cumulative Mass Retained (CMR) in minus 4.75 (No. 4) sieves

\[
R = \frac{M_1}{M_2} = \frac{1,966.7 \, g}{512.8 \, g} = 3.835
\]

where:
- \(R \) = minus 4.75 mm (No. 4) adjustment factor
- \(M_1 \) = total mass of minus 4.75 mm (No. 4) from the pan
- \(M_2 \) = mass of the reduced split of minus 4.75 mm (No. 4)

Adjusted Cumulative Mass Retained (ACMR) for the 2.00 mm (No. 10) sieve

\[
ACMR = 3.835 \times 207.1 \, g = 794.2 \, g
\]

Total Cumulative Mass Retained (TCMR) for the 2.00 mm (No. 10) sieve

\[
TCMR = 794.2 \, g + 1118.3 \, g = 1912.5 \, g
\]

Cumulative Percent Retained (CPR) for 2.00 mm (No. 10) sieve:

\[
CPR = \frac{1912.5 \, g}{3214.0 \, g} \times 100 = 59.5\%
\]
Percent Passing (PP) 2.00 mm (No. 10) sieve:

\[PP = 100.0\% - 59.5\% = 40.5\% \]

Reported Percent Passing = 41%

Method B Cumulative Gradation on Fine Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained, g (CMR)</th>
<th>Determine AIMR Multiply IMR by R (\frac{M_1}{M_2}) and adding D</th>
<th>Total Cumulative Mass Retained (TCMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00 (No. 10)</td>
<td>207.1</td>
<td>207.1 x 3.835 + 1118.3 =</td>
<td>1912.5</td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>395.0</td>
<td>395.0 x 3.835 + 1118.3 =</td>
<td>2633.1</td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>454.9</td>
<td>454.9 x 3.835 + 1118.3 =</td>
<td>2862.8</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>504.0</td>
<td>504.0 x 3.835 + 1118.3 =</td>
<td>3051.1</td>
</tr>
<tr>
<td>FCMR</td>
<td>511.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: sum of masses on fine sieves + minus 75 µm (No. 200) in the pan = 511.8
Method B Cumulative Final Gradation on All Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained g (CMR)</th>
<th>Determine CPR (Divide CMR by M and multiply by 100)</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Determine PP (by subtracting CPR from 100.0)</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>161.1</td>
<td>$\frac{161.1}{3214.0} \times 100 =$</td>
<td>5.0</td>
<td>$100.0 - 5.0 =$</td>
<td>95.0</td>
<td>95</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>642.5</td>
<td>$\frac{642.5}{3214.0} \times 100 =$</td>
<td>20.0</td>
<td>$100.0 - 20.0 =$</td>
<td>80.0</td>
<td>80</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1118.3 (D)</td>
<td>$\frac{1118.3}{3214.0} \times 100 =$</td>
<td>34.8</td>
<td>$100.0 - 34.8 =$</td>
<td>65.2</td>
<td>65</td>
</tr>
<tr>
<td>2.00 (No. 10)</td>
<td>1912.5</td>
<td>$\frac{1912.5}{3214.0} \times 100 =$</td>
<td>59.5</td>
<td>$100.0 - 59.5 =$</td>
<td>40.5</td>
<td>41</td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>2633.1</td>
<td>$\frac{2633.1}{3214.0} \times 100 =$</td>
<td>81.9</td>
<td>$100.0 - 81.9 =$</td>
<td>18.1</td>
<td>18</td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>2862.8</td>
<td>$\frac{2862.8}{3214.0} \times 100 =$</td>
<td>89.1</td>
<td>$100.0 - 89.1 =$</td>
<td>10.9</td>
<td>11</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>3051.1</td>
<td>$\frac{3051.1}{3214.0} \times 100 =$</td>
<td>94.9</td>
<td>$100.0 - 94.9 =$</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>FCMR</td>
<td>3081.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Original dry mass of the sample (M): 3214.0 g

* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Procedure Method C

1. Dry the sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the original dry mass of the sample to the nearest 0.1 percent or 0.1 g. Designate this mass as \(M \).

2. Break up any aggregations or lumps of clay, silt or adhering fines to pass the 4.75 mm (No. 4) sieve.

3. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 4.75 mm (No. 4) sieve.

4. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker, if not place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

 Note 1: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

5. Determine and record the cumulative mass retained for each sieve. Ensure that all material trapped in full openings of the sieve are removed and included in the mass retained.

 Note 2: For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.

6. Determine and record the mass of the minus 4.75 mm (No. 4) material in the pan. Designate this mass as \(M_1 \).

7. Perform the **Coarse Check Sum** calculation – Verify the total mass after coarse sieving agrees with the original dry mass (\(M \)) within 0.3 percent.

8. Reduce the minus 4.75 mm (No. 4) according to the FOP for AASHTO R 76 to produce a sample with a minimum mass of 500 g.
9. Determine and record the mass of the minus 4.75 mm (No. 4) split. Designate this mass as M_3.

10. Nest a protective sieve, such as a 2.0 mm (No. 10), above the 75 µm (No. 200) sieve

11. Place the sample in a container and cover with water.

Note 3: A detergent, dispersing agent, or other wetting solution may be added to the water to assure a thorough separation of the material finer than the 75 µm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.

12. Agitate vigorously to ensure complete separation of the material finer than 75 µm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. Avoid degradation of the sample when using a mechanical washing device.

Note 4: Washing longer than 10 minutes in a mechanical washer has been shown to cause significant amounts of degradation depending upon aggregate type.

13. Immediately pour the wash water containing the suspended material over the nested sieves; be careful not to pour out the coarser particles.

14. Add water to cover material remaining in the container, agitate, and repeat Step 12. Repeat until the wash water is reasonably clear.

15. Remove the upper sieve and return material retained to the washed sample.

16. Rinse the material retained on the 75 µm (No. 200) sieve until water passing through the sieve is reasonably clear and detergent or dispersing agent is removed, if used.

17. Return all material retained on the 75 µm (No. 200) sieve to the container by flushing into the washed sample.

Note 5: Excess water may be carefully removed with a bulb syringe; the removed water must be discharged back over the 75 µm (No. 200) sieve to prevent loss of fines.

18. Dry the washed sample portion to constant mass according to the FOP for AASHTO.
T 255. Cool to room temperature. Determine and record the dry mass, designate this mass as *dry mass before sieving*.

19. Select sieves required by the specification and those necessary to avoid overloading. With a pan on bottom, nest the sieves increasing in size starting with the 75 µm (No. 200) sieve up to, but not including, the 4.75 mm (No. 4) sieve.

20. Place the washed sample portion on the top sieve. Place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

Note 6: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

21. Determine and record the cumulative mass retained for each sieve. Ensure that all material trapped in full openings of the sieve are removed and included in the mass retained.

Note 7: For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening check by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.

22. Perform the *Fine Check Sum* calculation – Verify the *total mass after sieving* agrees with the *dry mass before sieving* within 0.3 percent. Do not use test results for acceptance if the *Check Sum* is greater than 0.3 percent.

23. Calculate the Cumulative Percent Retained (CPR) and Percent Passing (PP) for the 4.75 mm (No. 4) and larger.

24. Calculate the Cumulative Percent Retained (CPR-#4) and Percent Passing (PP-#4) for the minus 4.75 mm (No. 4) split and the Percent Passing for the minus 4.75 mm (No. 4).

25. Calculate the PP for the minus 4.75 mm (No. 4).

26. Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Method C Calculations

Check Sum

Coarse check sum = \(\frac{M - \text{total mass after coarse sieving}}{M} \times 100 \)

Fine check sum = \(\frac{\text{dry mass before sieving} - \text{total mass after fine sieving}}{\text{dry mass before sieving}} \times 100 \)

where:

\(M \) = Original dry mass of the sample

Cumulative Percent Retained (CPR) for 4.75 mm (No. 4) sieve and larger

\(CPR = \frac{CMR}{M} \times 100 \)

where:

\(CPR \) = Cumulative Percent Retained of the size increment for the total sample
\(CMR \) = Cumulative Mass Retained of the size increment for the total sample
\(M \) = Total dry sample mass before washing
Percent Passing (PP) 4.75 mm (No. 4) sieve and larger

\[PP = 100 - CPR \]

where:

- PP = Percent Passing of the size increment for the total sample
- CPR = Cumulative Percent Retained of the size increment for the total sample

Or, calculate PP for sieves larger than 4.75 mm (No. 4) sieve without calculating CPR

\[\frac{M - CMR}{M} \times 100 \]

Cumulative Percent Retained (CPR-#4) for minus 4.75 mm (No. 4) split

\[CPR_{-#4} = \frac{CMR_{-#4}}{M_3} \times 100 \]

where:

- CPR-#4 = Cumulative Percent Retained for the sieve sizes of M3
- CMR-#4 = Cumulative Mass Retained for the sieve sizes of M3
- M3 = Total mass of the minus 4.75 mm (No. 4) split before washing

Percent Passing (PP-#4) for minus 4.75 mm (No. 4) split

\[PP_{-#4} = 100 - CPR_{-#4} \]

where:

- PP-#4 = Percent Passing for the sieve sizes of M3
- CPR-#4 = Cumulative Percent Retained for the sieve sizes of M3
Percent Passing (PP) for sieves smaller than 4.75 mm (No. 4) sieve

\[PP = \frac{(PP_{#4} \times #4 DPP)}{100} \]

where:

PP = Total Percent Passing
PP_{#4} = Percent Passing for the sieve sizes of M_3
#4 PP = Total Percent Passing the 4.75 mm (No. 4) sieve

Or, calculate PP for sieves smaller than 4.75 mm (No. 4) sieve without calculating CPR_{#4} and PP_{#4}

\[PP = \frac{#4 DPP}{M_3} \times (M_3 - CMR_{#4}) \]

where:

PP = Total Percent Passing
#4 PP = Total Percent Passing the 4.75 mm (No. 4) sieve
M_3 = Total mass of the minus 4.75 mm (No. 4) split before washing
CMR_{#4} = Cumulative Mass Retained for the sieve sizes of M_3
Method C Example

Original dry mass of the sample \((M) \): 3304.5 g

Total mass after sieving equals

Cumulative Mass Retained (CMR) on the 4.75 (No. 4) plus the minus 4.75 mm (No. 4) from the pan: 3085.0 g

Coarse Check Sum

\[
Coarse\ Check\ Sum = \frac{3304.5\ g - 3304.5\ g}{3304.5\ g} \times 100 = 0.0\%
\]

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Cumulative Percent Retained (CPR) for the 9.5 mm (3/8 in.) sieve:

\[
CPR = \frac{604.1\ g}{3304.5\ g} \times 100 = 18.3\%
\]

Percent Passing (PP) for the 9.5 mm (3/8 in.) sieve:

\[
PP = 100.0\% - 18.3\% = 81.7\%
\]

Reported Percent Passing = 82%

Example for Alternate Percent Passing (PP) formula for the 9.5 mm (3/8 in.) sieve:

\[
PP = \frac{3304.5\ g - 604.1\ g}{3304.5\ g} \times 100 = 81.7\%
\]

Reported Percent Passing = 82%
Method C Cumulative Gradation on Coarse Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained, g (CMR)</th>
<th>Determine CPR</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Determine PP by subtracting CPR from 100.0</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0.0</td>
<td>100.0</td>
<td></td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>125.9</td>
<td>3.8</td>
<td>100.0 − 3.8 = 96.2</td>
<td></td>
<td>96.2</td>
<td>96</td>
</tr>
<tr>
<td>9.50 (3/8)</td>
<td>604.1</td>
<td>18.3</td>
<td>100.0 − 18.3 = 81.7</td>
<td></td>
<td>81.7</td>
<td>82</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1295.6</td>
<td>39.2</td>
<td>100.0 − 39.2 = 60.8 #4 PP</td>
<td></td>
<td>60.8 (No. 0.4 PP)</td>
<td>61</td>
</tr>
<tr>
<td>Mass in pan</td>
<td>2008.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMR: 1295.6 + 2008.9 = 3304.5

Original dry mass of the sample (M): 3304.5

Fine Sample

The pan (2008.9 g) was reduced according to the FOP for AASHTO R 76, to at least 500 g are available. In this case, the reduced mass was determined to be 527.6 g. This is M₃.

Dry mass of minus 4.75mm (No. 4) reduced portion before wash (M₃): 527.6 g
Dry mass of minus 4.75mm (No. 4) reduced portion after wash: 495.3 g
Total mass after fine sieving equals

Final Cumulative Mass Retained (FCMR) (includes minus 75 µm (No. 200) from the pan): 495.1 g
Fine Check Sum

\[\text{Fine Check Sum} = \frac{495.3 \ g - 495.1 \ g}{495.3 \ g} \times 100 = 0.04\% \]

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Cumulative Percent Retained (CPR-#4) for minus 4.75 mm (No. 4) for the 2.0 mm (No. 10) sieve:

\[CPR_{-#4} = \frac{194.3 \ g}{527.6 \ g} \times 100 = 36.8\% \]

Percent Passing (PP-#4) for minus 4.75 mm (No. 4) for the 2.0 mm (No. 10) sieve:

\[PP_{-#4} = 100.0\% - 36.8\% = 63.2\% \]
Method C Cumulative Gradation on Fine Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained (CMR)</th>
<th>Determine CPR by Divide CMR by M and multiply by 100</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Determine PP by subtracting CPR from 100</th>
<th>Percent Passing (PP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 (No. 10)</td>
<td>194.3</td>
<td>194.3/527.6 × 100 = 36.8</td>
<td>100.0 − 36.8 = 63.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>365.6</td>
<td>365.6/527.6 × 100 = 69.3</td>
<td>100.0 − 69.3 = 30.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>430.8</td>
<td>430.8/527.6 × 100 = 81.7</td>
<td>100.0 − 81.7 = 18.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>484.4</td>
<td>484.4/527.6 × 100 = 91.8</td>
<td>100.0 − 91.8 = 8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCMR</td>
<td>495.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dry mass of minus 4.75mm (No. 4) reduced portion before wash (M): 527.6 g
Dry mass after washing: 495.3 g

Percent Passing (PP) for the 2.0 mm (No. 10) sieve for the entire sample:

#4 PP (Total Percent Passing the 4.75 mm (No. 4) sieve) = 60.8%

\[
PP = \frac{63.2\% \times 60.8\%}{100} = 38.4\%
\]

Reported Percent Passing = 38%
<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained g (CMR)</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Percent Passing (PP -#4)</th>
<th>Determine PP multiply PP -#4 by #4 PP and divide by 100</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0.0</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>125.9</td>
<td>3.8</td>
<td></td>
<td>96.2</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>604.1</td>
<td>18.3</td>
<td></td>
<td>81.7</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1295.6</td>
<td>39.2</td>
<td></td>
<td>60.8 (#4 PP)</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>2.0 (No. 10)</td>
<td>194.3</td>
<td>36.8</td>
<td>63.2</td>
<td>$\frac{63.2 \times 60.8}{100} = 38.4$</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>365.6</td>
<td>69.3</td>
<td>30.7</td>
<td>$\frac{30.7 \times 60.8}{100} = 18.7$</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>430.8</td>
<td>81.7</td>
<td>18.3</td>
<td>$\frac{18.3 \times 60.8}{100} = 11.1$</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>484.4</td>
<td>91.8</td>
<td>8.2</td>
<td>$\frac{8.2 \times 60.8}{100} = 5.0$</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>FCMR</td>
<td>495.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Example for Alternate Percent Passing (PP) formula for the 2.0 mm (No. 10) sieve for the entire sample:

#4 PP (Total Percent Passing the 4.75 mm (No. 4) sieve) = 60.8%

$$ PP = \frac{60.8\%}{527.6} \times (527.6 - 194.3) = 38.4\% $$

Reported Percent Passing = 38%

Alternate Method C Cumulative Gradation on Coarse Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained, g (CMR)</th>
<th>Determine PP subtract CMR from M, divide result by M multiply by 100</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0.0</td>
<td></td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>125.9</td>
<td>$\frac{3304.5 - 125.9}{3304.5} \times 100 = 96.2$</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>604.1</td>
<td>$\frac{3304.5 - 604.1}{3304.5} \times 100 = 81.7$</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1295.6</td>
<td>$\frac{3304.5 - 1295.6}{3304.5} \times 100 = 60.8$</td>
<td>61 (#4 PP)</td>
<td></td>
</tr>
<tr>
<td>Mass in Pan</td>
<td>2008.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cumulative sieved mass: 1295.6 + 2008.9 = 3304.5

Original dry mass of the sample (M): 3304.5
Alternate Method C Cumulative Gradation on Fine Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained g (CMR_{#4})</th>
<th>Determine PP_{#4} subtract CMR_{#4} from M_3, divide result by M_3 multiply by 100</th>
<th>Percent Passing_{#4} (PP_{#4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 (No. 10)</td>
<td>194.3</td>
<td>(\frac{527.6 - 194.3}{527.6} \times 100 =) 63.2</td>
<td></td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>365.6</td>
<td>(\frac{527.6 - 365.6}{527.6} \times 100 =) 30.7</td>
<td></td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>430.8</td>
<td>(\frac{527.6 - 430.8}{527.6} \times 100 =) 18.3</td>
<td></td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>484.4</td>
<td>(\frac{527.6 - 484.4}{527.6} \times 100 =) 8.2</td>
<td></td>
</tr>
<tr>
<td>FCMR</td>
<td>495.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dry mass of minus 4.75mm (No. 4) reduced portion before wash \((M_3)\): 527.6 g
Dry mass after washing: 495.3 g
Alternate Method C Cumulative Final Gradation on All Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Percent Passing No. 4 (PP-#4)</th>
<th>Determine PP multiply PP-#4 by #4 PP and divide by 100</th>
<th>Determined Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td></td>
<td></td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td></td>
<td></td>
<td>96.2</td>
<td>96</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td></td>
<td></td>
<td>81.7</td>
<td>82</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td></td>
<td>60.8 (#4 PP)</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>
| 2.0 (No. 10) | 63.2 | \[
\frac{63.2 \times 60.8}{100} = 38.4
\] | 38.4 | 38 |
| 0.425 (No. 40) | 30.7 | \[
\frac{30.7 \times 60.8}{100} = 18.7
\] | 18.7 | 19 |
| 0.210 (No. 80) | 18.3 | \[
\frac{18.3 \times 60.8}{100} = 11.1
\] | 11.1 | 11 |
| 0.075 (No. 200) | 8.2 | \[
\frac{8.2 \times 60.8}{100} = 5.0
\] | 5.0 | 5.0 |

* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
FINENESS MODULUS

Fineness Modulus (FM) is used in determining the degree of uniformity of the aggregate gradation in PCC mix designs. It is an empirical number relating to the fineness of the aggregate. The higher the FM the coarser the aggregate. Values of 2.40 to 3.00 are common for FA in PCC. Variations in the FM from the same source could lead to concerns for the uniformity of the PCC being produced due to changes in the surface area the paste must cover. If these variations exceed agency set limits, changes to the mix design may be required.

The sum of the cumulative percentages retained on specified sieves in the following table divided by 100 gives the FM.

Sample Calculation

<table>
<thead>
<tr>
<th>Sieve Size mm (in)</th>
<th>Example A</th>
<th>Example B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent</td>
<td>Percent</td>
</tr>
<tr>
<td></td>
<td>Retained</td>
<td>Retained</td>
</tr>
<tr>
<td>75*(3)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>37.5*(11/2)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>19*(3/4)</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>9.5*(3/8)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>4.75*(No. 4)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2.36*(No. 8)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1.18*(No. 16)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0.60*(No. 30)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0.30*(No. 50)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0.15*(No. 100)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>∑ = 785</td>
<td>∑ = 278</td>
</tr>
</tbody>
</table>

FM = 7.85
FM = 2.78

In decreasing size order, each * sieve is one-half the size of the preceding * sieve.
Report

- On forms approved by the agency
- Sample ID
- Percent passing for each sieve
- Individual mass retained for each sieve
- Individual percent retained for each sieve
 or
- Cumulative mass retained for each sieve
- Cumulative percent retained for each sieve
- FM to the nearest 0.01

Report percentages to the nearest 1 percent except for the percent passing the 75 µm (No. 200) sieve, which shall be reported to the nearest 0.1 percent.

Tips!

- Check specification to see if material must be washed and split.
- Comply with Agency Method selection requirements.
- Do not lose any material when running the test.
- Remember to base calculations on the original dry mass of the sample.
- Check calculations, and sieves for damage or plugging, if results look “odd” or if the material suddenly goes out of spec.
- Save all material for rerunning.
ANNEX A

Time Evaluation

(Mandatory information)

The sieving time for each mechanical sieve shaker shall be checked at least annually to determine the time required for complete separation of the sample by the following method:

1. Shake the sample over nested sieves for approximately 10 minutes.
2. Provide a snug-fitting pan and cover for each sieve and hold in a slightly inclined position in one hand.
3. Hand shake each sieve by striking the side of the sieve sharply and with an upward motion against the heel of the other hand at the rate of about 150 times per minute, turning the sieve about one sixth of a revolution at intervals of about 25 strokes.

Note A1: A mallet may be used instead of the heel of the hand if comparable force is used.

If more than 0.5 percent by mass of the total sample prior to sieving passes any sieve after one minute of continuous hand sieving adjust shaker time and re-check.

In determining sieving time for sieve sizes larger than 4.75 mm (No. 4), limit the material on the sieve to a single layer of particles.
ANNEX B

Overload Determination
(Mandatory information)

Additional sieves may be necessary to keep from overloading sieves or to provide other information, such as fineness modulus. The sample may also be sieved in increments to prevent overloading.

- For sieves with openings smaller than 4.75 mm (No. 4), the mass retained on any sieve shall not exceed 7 kg/m² (4 g/in²) of sieving surface.
- For sieves with openings 4.75 mm (No. 4) and larger, the mass, in grams shall not exceed the product of 2.5 × (sieve opening in mm) × (effective sieving area). See Table B1.

TABLE B1

Maximum Allowable Mass of Material Retained on a Sieve (g)
Nominal Sieve Size, mm (in.)—Exact size is smaller (see AASHTO T 27)

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>203 dia (8)</th>
<th>305 dia (12)</th>
<th>305 by 305 (12 × 12)</th>
<th>350 by 350 (14 × 14)</th>
<th>372 by 580 (16 × 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0285</td>
<td>0.0670</td>
<td>0.0929</td>
<td>0.1225</td>
<td>0.2158</td>
</tr>
<tr>
<td>90 (3 1/2)</td>
<td>*</td>
<td>15,100</td>
<td>20,900</td>
<td>27,600</td>
<td>48,500</td>
</tr>
<tr>
<td>75 (3)</td>
<td>*</td>
<td>12,600</td>
<td>17,400</td>
<td>23,000</td>
<td>40,500</td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>*</td>
<td>10,600</td>
<td>14,600</td>
<td>19,300</td>
<td>34,000</td>
</tr>
<tr>
<td>50 (2)</td>
<td>3600</td>
<td>8400</td>
<td>11,600</td>
<td>15,300</td>
<td>27,000</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>2700</td>
<td>6300</td>
<td>8700</td>
<td>11,500</td>
<td>20,200</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>1800</td>
<td>4200</td>
<td>5800</td>
<td>7700</td>
<td>13,500</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>1400</td>
<td>3200</td>
<td>4400</td>
<td>5800</td>
<td>10,200</td>
</tr>
<tr>
<td>16.0 (5/8)</td>
<td>1100</td>
<td>2700</td>
<td>3700</td>
<td>4900</td>
<td>8600</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>890</td>
<td>2100</td>
<td>2900</td>
<td>3800</td>
<td>6700</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>670</td>
<td>1600</td>
<td>2200</td>
<td>2900</td>
<td>5100</td>
</tr>
<tr>
<td>6.3 (1/4)</td>
<td>440</td>
<td>1100</td>
<td>1500</td>
<td>1900</td>
<td>3400</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>330</td>
<td>800</td>
<td>1100</td>
<td>1500</td>
<td>2600</td>
</tr>
<tr>
<td>-4.75 (-No. 4)</td>
<td>200</td>
<td>470</td>
<td>650</td>
<td>860</td>
<td>1510</td>
</tr>
</tbody>
</table>
REVIEW QUESTIONS

1. What are the differences between methods A, B, and C?

2. Describe how sieves should be cleaned.

3. What should be done to protect the 75 µm (No.200) sieve during washing?

4. Once a washed sample is placed in the oven and dried to a constant mass, what is the next step?

5. The maximum mass, in g/m², of material retained on any sieve 4.75 mm (No.4) and larger may not exceed 2.5 times the sieve opening in mm. How much may be retained on the 12.5 mm (1/2 in) sieve, 203 mm (8in) in diameter?

6. For how long should material be sieved on the shaker?

7. How much unexplained sample mass may be lost before you would have to rerun an aggregate sample?
PERFORMANCE EXAM CHECKLIST

METHOD A
SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES
FOP FOR AASHTO T 27
MATERIALS FINER THAN 75 µm (No. 200) SIEVE IN MINERAL AGGREGATE
BY WASHING
FOP FOR AASHTO T 11

Participant Name ______________________________ Exam Date ______________

Record the symbols “P” for passing or “F” for failing on each step of the checklist.

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Minimum sample mass meets requirement of Table 1?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Sample dried to a constant mass by FOP for AASHTO T 255?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Sample cooled, and original dry mass of the sample recorded to the nearest 0.1 percent or 0.1 g?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Sample placed in container and covered with water?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Contents of the container vigorously agitated?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Suspension of minus 75 µm (No. 200) achieved?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Wash water poured through nested sieves such as 2 mm (No. 10) and 75 µm (No. 200)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Operation continued until wash water is reasonably clear?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Material retained on sieves returned to washed sample?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Washed sample dried to a constant mass by FOP for AASHTO T 255?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Washed sample cooled, and dry mass recorded to the nearest 0.1 percent or 0.1 g?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Sample placed in nest of sieves specified? (Additional sieves may be used to prevent overloading as allowed in FOP.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Material sieved in verified mechanical shaker for proper time?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Mass of material on each sieve and pan recorded to 0.1 g?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Total mass of material after sieving agrees with mass before sieving to within 0.3 percent (check sum)?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OVER
Procedure Element

<table>
<thead>
<tr>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Percentages calculated to the nearest 0.1 percent and reported to the nearest whole number, except 75 µm (No. 200) which is reported to the nearest 0.1 percent?</td>
<td>____ ____</td>
</tr>
<tr>
<td>17. Percentage calculations based on original dry mass of the sample?</td>
<td>____ ____</td>
</tr>
<tr>
<td>18. Calculations performed properly?</td>
<td>____ ____</td>
</tr>
</tbody>
</table>

Comments: First attempt: Pass Fail Second attempt: Pass Fail

Examiner Signature ____________________________ WAQTC #:________________
PERFORMANCE EXAM CHECKLIST

METHOD B
SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES
FOP FOR AASHTO T 27
MATERIALS FINER THAN 75 µm (No. 200) SIEVE IN MINERAL AGGREGATE
BY WASHING
FOP FOR AASHTO T 11

Participant Name ______________________________ Exam Date ______________

Record the symbols “P” for passing or “F” for failing on each step of the checklist.

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Minimum sample mass meets requirement of Table 1?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Sample dried to a constant mass by FOP for AASHTO T 255?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Sample cooled, and original dry mass of the sample recorded to the nearest 0.1 percent or 0.1 g?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Sample placed in container and covered with water?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Contents of the container vigorously agitated?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Suspension of minus 75 µm (No. 200) achieved?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Wash water poured through nested sieves such as 2 mm (No. 10) and 75 µm (No. 200)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Operation continued until wash water is reasonably clear?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Material retained on sieves returned to washed sample?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Washed sample dried to a constant mass by FOP for AASHTO T 255?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Washed sample cooled, and dry mass recorded to nearest 0.1 percent or 0.1 g?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Sample placed in nest of sieves specified? (Additional sieves may be used to prevent overloading as allowed in FOP.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Material sieved in verified mechanical shaker for proper time?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Mass of material on each sieve and pan determined to the nearest 0.1 percent or 0.1 g?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Total mass of material after sieving agrees with mass before sieving to within 0.3 percent (coarse check sum)?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OVER
<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Material in pan reduced in accordance with FOP for AASHTO R 76 to at least 500 g?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Mass of minus 4.75 mm (No. 4) split recorded to the nearest 0.1 g?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Sample placed in nest of sieves specified? (Additional sieves may be used to prevent overloading as allowed in FOP.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Material sieved in verified mechanical shaker for proper time?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Mass of material on each sieve and pan recorded to the nearest percent or 0.1 g?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Total mass of material after sieving agrees with mass before sieving to within 0.3 percent (fine check sum)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Percentages calculated to the nearest 0.1 percent and reported to the nearest whole number, except 75 µm (No.200) which is reported to the nearest 0.1 percent?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Percentage calculations based on original dry mass of the sample?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Calculations performed properly?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments: First attempt: Pass Fail Second attempt: Pass Fail

Examiner Signature ____________________________ WAQTC #:__________________
PERFORMANCE EXAM CHECKLIST

METHOD C
SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES
FOP FOR AASHTO T 27
MATERIALS FINER THAN 75 µm (No. 200) SIEVE IN MINERAL AGGREGATE
BY WASHING
FOP FOR AASHTO T 11

Participant Name ______________________________ Exam Date ______________

Record the symbols “P” for passing or “F” for failing on each step of the checklist.

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Minimum sample mass meets requirement of Table 1?</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>2. Sample dried to a constant mass by FOP for AASHTO T 255?</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>3. Sample cooled, and original dry mass of the sample recorded to the nearest 0.1 percent or 0.1 g?</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>4. Material aggregations and clay lumps, silt, or adhering fines broken up?</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>5. Sample placed in nest of sieves specified? (Additional sieves may be used to prevent overloading as allowed in FOP.)</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>6. Material sieved in verified mechanical shaker for proper time?</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>7. Mass of material on each sieve and in pan determined to the nearest 0.1 percent or 0.1 g?</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>8. Complete separation of coarse and fine particles achieved?</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>9. Total mass of material after sieving agrees with original dry mass of sample to within 0.3 percent (coarse check sum)?</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>10. Material in pan reduced to test size for washing in accordance with FOP for AASHTO R 76?</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>11. Mass of the minus 4.75 mm (No. 4) split sample recorded to the nearest 0.1 g?</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>12. Test sample placed in container and covered with water?</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>13. Contents of the container vigorously agitated?</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>14. Suspension of minus 75 µm (No. 200) achieved?</td>
<td>_______</td>
<td>_______</td>
</tr>
</tbody>
</table>

OVER
Procedure Element

<table>
<thead>
<tr>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Wash water poured through a set of nested sieves, such as a 2.0 mm (No. 10) over the 75 µm (No. 200)?</td>
<td>_____</td>
</tr>
<tr>
<td>16. Operation continued until wash water is reasonably clear?</td>
<td>_____</td>
</tr>
<tr>
<td>17. Material retained on sieves returned to washed sample?</td>
<td>_____</td>
</tr>
<tr>
<td>18. Washed test sample dried to a constant mass in accordance with FOP for AASHTO T 255?</td>
<td>_____</td>
</tr>
<tr>
<td>19. Washed test sample cooled, and dry mass recorded to the nearest 0.1 g?</td>
<td>_____</td>
</tr>
<tr>
<td>20. Test sample placed in nest of sieves specified? (Additional sieves may be used to prevent overloading as allowed in FOP.)</td>
<td>_____</td>
</tr>
<tr>
<td>21. Material sieved in verified mechanical shaker for proper time?</td>
<td>_____</td>
</tr>
<tr>
<td>22. Mass of material on each sieve and in pan determined to nearest 0.1g?</td>
<td>_____</td>
</tr>
<tr>
<td>23. Total mass of material after sieving agrees with mass after washing to within 0.3 percent (fine check sum)?</td>
<td>_____</td>
</tr>
<tr>
<td>24. Percentages calculated to the nearest 0.1 percent and reported to the nearest whole number, except 75 µm (No. 200) which is reported to the nearest 0.1 percent?</td>
<td>_____</td>
</tr>
<tr>
<td>25. Calculations performed, and results reported properly?</td>
<td>_____</td>
</tr>
<tr>
<td>26. Percentage calculations based on original dry mass of the sample?</td>
<td>_____</td>
</tr>
</tbody>
</table>

Comments:

First attempt: Pass____ Fail____
Second attempt: Pass____ Fail____

Examiner Signature ____________________________ WAQTC #:________________
DETERMINING THE PERCENTAGE OF FRACTURE IN COARSE AGGREGATE
FOP FOR AASHTO T 335

Significance

Aggregate particles can be round or smooth, as is often the case for material mined from the bottom of a river. This material has been rounded or smoothed as the stone has been transported downstream through the years. Aggregate can also be fractured, exhibiting a rough surface. Material that has been mechanically crushed has at least one fractured, rough surface per particle.

Fractured material often exhibits better interlocking between particles than smooth material does. This improved interlocking results in stronger material from the standpoint of supporting a load in a road base. Using stronger material results in a lesser depth of material being used. Fractured material may also be used in Portland cement (PCC) or asphalt cement concretes (ACC) to obtain a better bond between aggregate particles and the cement. Again, a stronger structure results.

Scope

This procedure covers the determination of the percentage, by mass, of a coarse aggregate (CA) sample that consists of fractured particles meeting specified requirements in accordance with AASHTO T 335-09.

In this FOP, a sample of aggregate is screened on the sieve separating CA and fine aggregate (FA). This sieve will be identified in the agency’s specifications but might be the 4.75 mm (No. 4) sieve. CA particles are visually evaluated to determine conformance to the specified fracture. The percentage of conforming particles, by mass, is calculated for comparison to the specifications.
Apparatus

- Balance or scale: Capacity sufficient for the principle sample mass, accurate to 0.1 percent of the sample mass or readable to 0.1 g. and meeting the requirements of AASHTO M 231.
- Sieves: Meeting requirements of the FOP for AASHTO T 27/T 11.
- Splitter: Meeting the requirements of the FOP for AASHTO R 76.

Terminology

1. Fractured Face: An angular, rough, or broken surface of an aggregate particle created by crushing, or other means. A face is considered a “fractured face” whenever one-half or more of the projected area, when viewed normal to that face, is fractured with sharp and well-defined edges. This excludes small nicks.

2. Fractured particle: A particle of aggregate having at least the minimum number of fractured faces specified. (This is usually one or two.)

Sample Preparation

1. Sample and reduce the aggregate in accordance with the FOP’s for AASHTO R 90 and R 76.

2. When the specifications list only a total fracture percentage, the sample shall be prepared in accordance with Method 1. When the specifications require that the fracture be counted and reported on each sieve, the sample shall be prepared in accordance with Method 2.

3. Method 1 - Combined Fracture Determination
 a. Dry the sample sufficiently to obtain a clean separation of CA and FA material in the sieving operation.
b. Sieve the sample in accordance with the FOP for AASHTO T 27/T 11 over the 4.75 mm (No. 4) sieve, or the appropriate sieve listed in the agency’s specifications for this material.

Note 1: Where necessary, wash the sample over the sieve designated for the determination of fractured particles to remove any remaining fine material, and dry to a constant mass in accordance with the FOP for AASHTO T 255.

c. Reduce the sample using Method A – Mechanical Splitter, in accordance with the FOP for AASHTO R 76, to the appropriate test size. This test size should be slightly larger than shown in Table 1, to account for loss of fines through washing if necessary.

TABLE 1

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Method 1 (Combined Sieve Fracture)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Maximum Size*</td>
<td>Minimum Cumulative Sample Mass Retained on 4.75 mm (No. 4) Sieve (g (lb))</td>
</tr>
<tr>
<td>mm (in.)</td>
<td></td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>2500 (6)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>1500 (3.5)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>1000 (2.5)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>700 (1.5)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>400 (0.9)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>200 (0.4)</td>
</tr>
</tbody>
</table>

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

3. Method 2 – Individual Sieve Fracture Determination

a. Dry the sample sufficiently to obtain a clean separation of CA and FA material in the sieving operation. A washed sample from the gradation determination (FOP for T 27/T 11) may be used.

b. If not, sieve the sample in accordance with FOP for AASHTO T 27 over the sieves listed in the specifications for this material.
Note 2: If overload (buffer) sieves are used the material from that sieve must be added to the next specification sieve.

c. The size of test sample for each sieve shall meet the minimum size shown in Table 2. Utilize the total retained sieve mass or select a representative portion from each sieve mass by splitting or quartering in accordance with the FOP for AASHTO R 76.

Note 3: Where necessary, wash the sample over the sieves designated for the determination of fractured particles to remove any remaining fine material, and dry to a constant mass in accordance with FOP for AASHTO T 255.

TABLE 2
Sample Size
Method 2 (Individual Sieve Fracture)

<table>
<thead>
<tr>
<th>Sieve Size (mm (in.))</th>
<th>Minimum Sample Mass (g (lb))</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5 (1 1/4)</td>
<td>1500 (3.5)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>1000 (2.2)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>700 (1.5)</td>
</tr>
<tr>
<td>16.0 (5/8)</td>
<td>500 (1.0)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>300 (0.7)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>200 (0.5)</td>
</tr>
<tr>
<td>6.3 (1/4)</td>
<td>100 (0.2)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>100 (0.2)</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>25 (0.1)</td>
</tr>
<tr>
<td>2.00 (No. 10)</td>
<td>25 (0.1)</td>
</tr>
</tbody>
</table>

Note 4: If fracture is determined on a sample obtained for gradation, use the mass retained on the individual sieves, even if it is less than the minimum listed in Table 2.

If less than 5 percent of the total mass is retained on a single specification sieve, include that material on the next smaller specification sieve. If a smaller specification sieve does not exist, this material shall not be included in the fracture determination.
Procedure

1. After cooling, spread the dried sample on a clean, flat surface.

2. Examine each particle face and determine if the particle meets the fracture criteria.

3. Separate the sample into three categories:
 - Fractured particles meeting the criteria
 - Particles not meeting the criteria
 - Questionable or borderline particles

4. Determine the dry mass of particles in each category to the nearest 0.1 g.

5. Calculate the percent questionable particles.

6. Re-sort the questionable particles when more than 15 percent is present. Continue sorting until there is no more than 15 percent in the questionable category.

7. Calculate the percent fractured particles meeting criteria to nearest 0.1 percent. Report to 1 percent.

Calculation

Calculate the mass percentage of questionable particles to the nearest 1 percent using the following formula:

\[\%Q = \frac{Q}{F + Q + N} \times 100 \]

where:

- \%Q = Percent of questionable fractured particles
- F = Mass of fractured particles
- Q = Mass of questionable particles
- N = Mass of unfractured particles
Example:

\[
\% Q = \frac{97.6 \text{ g}}{632.6 \text{ g} + 97.6 \text{ g} + 352.6 \text{ g}} \times 100 = 9.0\%
\]

Given:

- Mass of fractured particles = 632.6 g
- Mass of questionable particles = 97.6 g
- Mass of unfractured particles = 352.6 g

Calculate the mass percentage of fractured faces to the nearest 0.1 percent using the following formula:

\[
P = \frac{\frac{Q}{2} + F}{F + Q + N} \times 100
\]

Where:

- \(P \) = Percent of fracture
- \(F \) = Mass of fractured particles
- \(Q \) = Mass of questionable or borderline particles
- \(N \) = Mass of unfractured particles

Example:

\[
P = \frac{\frac{97.6 \text{ g}}{2} + 632.6 \text{ g}}{632.6 \text{ g} + 97.6 \text{ g} + 352.6 \text{ g}} \times 100 = 62.9\% \quad \text{Report 63%}
\]

Given:

- Mass of fractured particles = 632.6 g
- Mass of questionable particles = 97.6 g
- Mass of unfractured particles = 352.6 g
Report

• On forms approved by the agency
• Sample ID
• Fractured particles to the nearest 1 percent
REVIEW QUESTIONS

1. Describe a fractured face.

2. Describe a fractured particle.

3. Is washing of the sample always required?

4. What is the difference between Method 1 and Method 2?
PERFORMANCE EXAM CHECKLIST

DETERMINING THE PERCENTAGE OF FRACTURE IN COARSE AGGREGATE FOP FOR AASHTO T 335

Participant Name ______________________________ Exam Date ______________

Record the symbols “P” for passing or “F” for failing on each step of the checklist.

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sample properly sieved through specified sieve(s)?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>2. Sample reduced to correct size?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>3. Sample dried and cooled, if necessary?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>4. Particles separated into fractured, unfractured, and questionable categories?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>5. Dry mass of each category determined to nearest 0.1 g?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>6. Questionable category resorted if more than 15 percent of total mass falls in that category?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>7. Fracture calculation performed correctly?</td>
<td>_____</td>
<td>_____</td>
</tr>
</tbody>
</table>

Comments: First attempt: Pass_____ Fail_____ Second attempt: Pass_____ Fail_____

Examiner Signature ____________________________ WAQTC #:___________________
PLASTIC FINES IN GRADED AGGREGATES AND SOILS BY THE USE OF THE
SAND EQUIVALENT TEST
FOP FOR AASHTO T 176

Significance
Excessive amounts of fine dust or clay-like
materials smaller than the 75 µm (No. 200) sieve –
may cause problems in aggregate and soils. For
example, road base with a high fine content may
not drain freely. Trapped moisture will freeze and
thaw during winter months, causing damage to the
road.

Scope
This procedure covers the determination of plastic
fines in accordance with AASHTO T 176-02. It
serves as a rapid test to show the relative
proportion of fine dust or clay-like materials in fine
aggregates (FA) and soils.

Apparatus
See AASHTO T 176 for a detailed listing of sand
equivalent apparatus. Note that the siphon tube
and blow tube may be glass or stainless steel as
well as copper.

- Graduated plastic cylinder.
- Rubber stopper.
- Irrigator tube.
- Weighted foot assembly: Having a mass of
1000 ±5 g. There are two models of the
weighted foot assembly. The older model has a
guide cap that fits over the upper end of the
graded cylinder and centers the rod in the
cylinder. It is read using a slot in the centering
screws. The newer model has a sand-reading
indicator 254 mm (10 in.) above this point and
is preferred for testing clay-like materials.
- Bottle: clean, glass or plastic, of sufficient size
to hold working solution
- Siphon assembly: The siphon assembly will be
fitting to a 4 L (1 gal.) bottle of working
calcium chloride solution placed on a shelf 915 ±25 mm (36 ±1 in.) above the work surface.

- Measuring can: Having a capacity of 85 ±5 mL (3 oz.).
- Funnel: Having a wide-mouth for transferring sample into the graduated cylinder.
- Quartering cloth: 600 mm (2 ft) square nonabsorbent cloth, such as plastic or oilcloth.
- Mechanical splitter: See FOP for AASHTO R 76.
- Strike-off bar: A straightedge or spatula.
- Clock or watch reading in minutes and seconds.
- Manually-operated sand equivalent shaker: Capable of producing an oscillating motion at a rate of 100 complete cycles in 45 ±5 seconds, with a hand assisted half stroke length of 127 ±5 mm (5 ±0.2 in.). It may be held stable by hand during the shaking operation. It is recommended that this shaker be fastened securely to a firm and level mount, by bolts or clamps, if a large number of determinations are to be made.
- Mechanical shaker: See AASHTO T 176 for equipment and procedure.
- Oven: Capable of maintaining a temperature of 110 ±5°C (230 ±9°F).
- Thermometer: Calibrated liquid-in-glass or electronic digital type designed for total immersion and accurate to 0.1°C (0.2°F).

Materials

- Stock calcium chloride solution: Obtain commercially prepared calcium chloride stock solution meeting AASHTO requirements.
- Working calcium chloride solution: Make 3.8 L (1 gal) of working solution. Fill the bottle with 2 L (1/2 gal) of distilled or demineralized water, add one 3 oz. measuring can (85 ±5 mL) of stock calcium chloride solution. Agitate
vigorously for 1 to 2 minutes. Add the remainder of the water, approximately 2 L (1/2 gal.) for a total of 3.8 L (1 gal) of working solution. Repeat the agitation process. Tap water may be used if it is proven to be non-detrimental to the test and if it is allowed by the agency. The shelf life of the working solution is approximately 30 days. Label working solution with the date mixed. Discard working solutions more than 30 days old.

Note 1: The graduated cylinder filled to 4.4 in. contains 88 mL and may be used to measure the stock solution.

Control

The temperature of the working solution should be maintained at 22 ±3°C (72 ±5°F) during the performance of the test. If field conditions preclude the maintenance of the temperature range, reference samples should be submitted to the Central/Regional Laboratory, as required by the agency, where proper temperature control is possible. Samples that meet the minimum sand equivalent requirement at a working solution temperature outside of the temperature range need not be subject to reference testing.

Sample Preparation

1. Obtain the sample in accordance with the FOP for AASHTO R 90 and reduce in accordance with the FOP for AASHTO R 76.

2. Sieve the sample over the 4.75 mm (No. 4) sieve. If the material is in clods, break it up and rescreen it over a 4.75 mm (No. 4) sieve. Clean all fines from particles retained on the 4.75 mm (No. 4) sieve and included with the material passing that sieve.

3. Split or quarter 1000 to 1500 g of material from the portion passing the 4.75 mm (No. 4) sieve. Use extreme care to obtain a truly representative portion of the original sample.
Note 2: Experiments show that, as the amount of material being reduced by splitting or quartering is decreased, the accuracy of providing representative portions is reduced. It is imperative that the sample be split or quartered carefully. When it appears necessary, dampen the material before splitting or quartering to avoid segregation or loss of fines.

Note 3: All tests, including reference tests, will be performed using Alternative Method No. 2 as described in AASHTO T 176, unless otherwise specified.

4. The sample must have the proper moisture content to achieve reliable results. This condition is determined by tightly squeezing a small portion of the thoroughly mixed sample in the palm of the hand. If the cast that is formed permits careful handling without breaking, the correct moisture content has been obtained.

Note 4: Clean sands having little 75 µm (No. 200), such as sand for Portland Cement Concrete (PCC), may not form a cast. If the material is too dry, the cast will crumble, and it will be necessary to add water and remix and retest until the material forms a cast. When the moisture content is altered to provide the required cast, the altered sample should be placed in a pan, covered with a lid or with a damp cloth that does not touch the material, and allowed to stand for a minimum of 15 minutes. Samples that have been sieved without being air-dried and still retain enough natural moisture are exempted from this requirement.

If the material shows any free water, it is too wet to test and must be drained and air dried. Mix frequently to ensure uniformity. This drying process should continue until squeezing provides the required cast.

5. Place the sample on the quartering cloth and mix by alternately lifting each corner of the cloth and pulling it over the sample toward the diagonally opposite corner, being careful to keep the top of the cloth parallel to the bottom, thus causing the material to be rolled. When the material appears homogeneous, finish the mixing with the sample in a pile near the center of the cloth.
6. Fill the measuring can by pushing it through the base of the pile while exerting pressure with the hand against the pile on the side opposite the measuring can. As the can is moved through the pile, hold enough pressure with the hand to cause the material to fill the tin to overflowing. Press firmly with the palm of the hand, compacting the material, and place the maximum amount in the can. Strike off the can level full with the straightedge or spatula.

7. When required, repeat steps 5 and 6 to obtain additional samples.

Procedure

1. Start the siphon by forcing air into the top of the solution bottle through the tube while the pinch clamp is open. Siphon 101.6 ±2.5 mm (4 ±0.1 in.) of working calcium chloride solution into the plastic cylinder.

2. Pour the prepared test sample from the measuring can into the plastic cylinder, using the funnel to avoid spilling.

3. Tap the bottom of the cylinder sharply on the heel of the hand several times to release air bubbles and to promote thorough wetting of the sample.

4. Allow the wetted sample to stand undisturbed for 10 ±1 minutes.

5. At the end of the 10-minute period, stopper the cylinder and loosen the material from the bottom by simultaneously partially inverting and shaking the cylinder.

6. After loosening the material from the bottom of the cylinder, shake the cylinder and contents by any one of the following methods:
 a. Mechanical Method – Place the stoppered cylinder in the mechanical shaker, set the timer, and allow the machine to shake the cylinder and contents for 45 ±1 seconds.

Caution: Agencies may require additional operator qualifications for the next two methods.
b. Manually-operated Shaker Method –
Secure the stoppered cylinder in the three spring clamps on the carriage of the manually-operated sand equivalent shaker and set the stroke counter to zero. Stand directly in front of the shaker and force the pointer to the stroke limit marker painted on the backboard by applying an abrupt horizontal thrust to the upper portion of the right-hand spring strap. Remove the hand from the strap and allow the spring action of the straps to move the carriage and cylinder in the opposite direction without assistance or hindrance. Apply enough force to the right-hand spring steel strap during the thrust portion of each stroke to move the pointer to the stroke limit marker by pushing against the strap with the ends of the fingers to maintain a smooth oscillating motion. The center of the stroke limit marker is positioned to provide the proper stroke length and its width provides the maximum allowable limits of variation.

Proper shaking action is accomplished when the tip of the pointer reverses direction within the marker limits. Proper shaking action can best be maintained by using only the forearm and wrist action to propel the shaker.

Continue shaking for 100 strokes.

c. Hand Method – Hold the cylinder in a horizontal position and shake it vigorously in a horizontal linear motion from end to end. Shake the cylinder 90 cycles in approximately 30 seconds using a throw of 229 mm ±25 mm (9 ±1 in.). A cycle is defined as a complete back and forth motion. To properly shake the cylinder at this speed, it will be necessary for the operator to shake with the forearms only, relaxing the body and shoulders.

Set the cylinder upright on the work table and remove the stopper.
8. Insert the irrigator tube in the cylinder and rinse material from the cylinder walls as the irrigator is lowered. Force the irrigator through the material to the bottom of the cylinder by applying a gentle stabbing and twisting action while the working solution flows from the irrigator tip. Work the irrigator tube to the bottom of the cylinder as quickly as possible, since it becomes more difficult to do this as the washing proceeds. This flushes the fine material into suspension above the coarser sand particles.

Continue to apply a stabbing and twisting action while flushing the fines upward until the cylinder is filled to the 381 mm (15 in.) mark. Then raise the irrigator slowly without shutting off the flow so that the liquid level is maintained at about 381 mm (15 in.) while the irrigator is being withdrawn. Regulate the flow just before the irrigator is entirely withdrawn and adjust the final level to 381 mm (15 in.).

Note 5: Occasionally the holes in the tip of the irrigator tube may become clogged by a particle of sand. If the obstruction cannot be freed by any other method, use a pin or other sharp object to force it out (such as a toothpick), using extreme care not to enlarge the size of the opening. Also, keep the tip sharp as an aid to penetrating the sample.

9. Allow the cylinder and contents to stand undisturbed for 20 minutes ±15 seconds. Start timing immediately after withdrawing the irrigator tube.

Note 6: Any vibration or movement of the cylinder during this time will interfere with the normal settling rate of the suspended clay and will cause an erroneous result.

10. Clay and sand readings:
 a. At the end of the 20-minute sedimentation period, read and record the level of the top of the clay suspension. This is referred to as the clay reading.
Note 7: If no clear line of demarcation has formed at the end of the 20-minute sedimentation period, allow the sample to stand undisturbed until a clay reading can be obtained, then immediately read and record the level of the top of the clay suspension and the total sedimentation time. If the total sedimentation time exceeds 30 minutes, rerun the test using three individual samples of the same material. Read and record the clay column height of the sample requiring the shortest sedimentation period only. Once a sedimentation time has been established, subsequent tests will be run using that time. The time will be recorded along with the test results on all reports.

b. After the clay reading has been taken, place the weighted foot assembly over the cylinder and gently lower the assembly until it comes to rest on the sand. Do not allow the indicator to hit the mouth of the cylinder as the assembly is being lowered. Subtract 254 mm (10 in.) from the level indicated by the extreme top edge of the indicator and record this value as the sand reading.

c. If clay or sand readings fall between 2.5 mm (0.1 in.) graduations, record the level of the higher graduation as the reading. For example, a clay reading that appears to be 7.95 would be recorded as 8.0; a sand reading that appears to be 3.22 would be recorded as 3.3.

d. If two Sand Equivalent (SE) samples are run on the same material and the second varies by more than ±4, based on the first cylinder results, additional tests shall be run.

e. If three or more Sand Equivalent (SE) samples are run on the same material, average the results. If an individual result varies by more than ±4, based on the average result, additional tests shall be run.
Calculations

Calculate the SE to the nearest 0.1 using the following formula:

\[
SE = \frac{Sand \ Reading}{Clay \ Reading} \times 100
\]

Example

Given:

Sand Reading = 3.3
Clay Reading = 8.0

\[
SE = \frac{3.3}{8.0} \times 100 = 41.25 \text{ or } 41.3 \quad \text{Report 42}
\]

Note 8: This example reflects the use of equipment made with English units. At this time, equipment made with metric units is not available.

Report the SE as the next higher whole number. In the example above, the 41.3 would be reported as 42. An SE of 41.0 would be reported as 41.

When averaging two or more samples, raise each calculated SE value to the next higher whole number (reported value) before averaging.

Example

calculated value 1 = 41.3
calculated value 2 = 42.8

These values are reported as 42 and 43, respectively.

Then average the two reported values:

\[
Average \ SE = \frac{42 + 43}{2} = 42.5 \quad \text{Report 43}
\]

If the average value is not a whole number, raise it to the next higher whole number.
Report

- On forms approved by the agency
- Sample ID
- Results to the next higher whole number.
- Sedimentation time if over 20 minutes.

Tips!

- Make sure you have enough working solution **before** you start the procedure.
- Be careful when reducing and dampen the material, if necessary, to avoid segregation or loss of fines.
- Make sure both holes in irrigator tube are clear.
- 100 percent crushed material interlocks when inserting the irrigator tube the first time. You must apply a firm, twisting action to lower the irrigator tube in subsequent flushings.
- Do **not** run equipment that causes vibrations during settling.
REVIEW QUESTIONS

1. Describe the proper way to acquire the SE test sample.

2. After tapping the bottom of the cylinder to release air bubbles, how long should the wetted sample stand?

3. What happens if no clear line of demarcation occurs in 20 minutes? In 30 minutes?

4. Describe how the rounding of numbers in this FOP differs from the standard mathematical approach.

5. How much material passing the 4.75 mm (No. 4) sieve is required for an SE test?

6. Explain the difference in calculating two cylinder results and three or more cylinder results.
PERFORMANCE EXAM CHECKLIST

PLASTIC FINES IN GRADED AGGREGATES AND SOILS BY THE USE OF THE SAND EQUIVALENT TEST
FOP FOR AASHTO T 176

Participant Name ______________________________ Exam Date ______________

Record the symbols “P” for passing or “F” for failing on each step of the checklist.

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Sample passed through 4.75 mm (No. 4) sieve?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>2. Material in clods broken up and re-screened?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>3. Split or quarter 1,000 to 1,500 g of material passing the 4.75 mm (No. 4) sieve? NOTE: If necessary, the material may be dampened before splitting to avoid segregation or loss of fines.</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>4. No fines lost?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>5. Working solution dated?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>6. Temperature of working solution 22 ±3°C (72 ±5°F)?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>7. Working calcium chloride solution 915 ±25 mm (36 ±1 in) above the work surface?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>8. 101.6 ±2.5 mm (4 ±0.1 in) working calcium chloride solution siphoned into cylinder?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>9. Material checked for moisture condition by tightly squeezing small portion in palm of hand and forming a cast?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>10. Sample at proper water content?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. If too dry (cast crumbles easily) water added, re-mixed, covered, and allowed to stand for at least 15 minutes?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>b. If too wet (shows free water) sample drained, air dried and mixed frequently?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>11. Sample placed on splitting cloth and mixed by alternately lifting each corner of the cloth and pulling it over the sample toward diagonally opposite corner, causing material to be rolled?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>12. Is material thoroughly mixed?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>13. When material appears to be homogeneous, mixing finished with sample in a pile near center of cloth?</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>14. Fill the 85 mL (3 oz) tin by pushing through base of pile with other hand on opposite side of pile?</td>
<td>_____</td>
<td>_____</td>
</tr>
</tbody>
</table>

OVER
<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Material fills tin to overflowing?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>16. Material compacted into tin with palm of hand?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>17. Tin struck off level full using spatula or straightedge?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>18. Prepared sample funneled into cylinder with no loss of fines?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>19. Bottom of cylinder tapped sharply on heel of hand several times to release air bubbles?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>20. Wetted sample allowed to stand undisturbed for 10 min. ±1 min.?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>21. Cylinder stoppered and material loosened from bottom by shaking?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>22. Stoppered cylinder placed properly in mechanical shaker and cylinder shaken 45 ±1 seconds?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>23. Following shaking, cylinder set vertical on work surface and stopper removed?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>24. Irrigator tube inserted in cylinder and material rinsed from cylinder walls as irrigator is lowered?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>25. Irrigator tube forced through material to bottom of cylinder by gentle stabbing and twisting action?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>26. Stabbing and twisting motion applied until cylinder filled to 381 mm (15 in.) mark?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>27. Liquid raised and maintained at 381 mm (15 in.) mark while irrigator is being withdrawn?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>28. Liquid at the 381 mm (15 in.) mark?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>29. Contents let stand 20 minutes ±15 seconds?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>30. Timing started immediately after withdrawal of irrigator?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>31. No vibration or disturbance of the sample?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>32. Readings taken at 20 minutes or up to 30 minutes, when a definite line appears?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>33. Clay level correctly read, rounded, and recorded?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>34. Weighted foot assembly lowered into cylinder without hitting mouth of cylinder?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>35. Sand level correctly read, rounded, and recorded?</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>36. Calculations performed correctly?</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

Comments:
First attempt: Pass Fail Second attempt: Pass Fail

Examiner Signature ____________________________ **WAQTC #:** _____________

35_T176_pr_09 Aggregate 8-14 Pub. October 2020
APPENDIX A

FIELD OPERATING PROCEDURES – SHORT FORMS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
</tr>
</thead>
</table>
| 9 | FOP for AASHTO R 90
Sampling of Aggregates |
| 10 | FOP for AASHTO R 76
Reducing Samples of Aggregate to Testing Size |
| 11 | FOP for AASHTO T 255
Total Evaporable Moisture Content of Aggregate by Drying |
| 12 | FOP for AASHTO T 27
Sieve Analysis of Fine and Coarse Aggregates;
AASHTO T 11
Materials Finer than 75 μm (No. 200) Sieve in Mineral Aggregates by Washing |
| 13 | FOP for AASHTO T 335
Determining the Percentage of Fracture in Coarse Aggregate |
| 14 | FOP for AASHTO T 176
Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test |
SAMPLING AGGREGATE PRODUCTS
FOP FOR AASHTO R 90

Scope
This procedure covers sampling of coarse, fine, or a combination of coarse and fine aggregates (CA and FA) in accordance with AASHTO R 90-18. Sampling from conveyor belts, transport units, roadways, and stockpiles is covered.

Apparatus
- Shovels or scoops, or both
- Brooms, brushes, and scraping tools
- Sampling tubes of acceptable dimensions
- Mechanical sampling systems: normally a permanently attached device that allows a sample container to pass perpendicularly through the entire stream of material or diverts the entire stream of material into the container by manual, hydraulic, or pneumatic operation
- Belt template
- Sampling containers

Procedure – General
Sampling is as important as testing. The technician shall use every precaution to obtain samples that are representative of the material. Determine the time or location for sampling in a random manner.

1. Wherever samples are taken, obtain multiple increments of approximately equal size.

2. Mix the increments thoroughly to form a field sample that meets or exceeds the minimum mass recommended in Table 1.
TABLE 1

Recommended Sample Sizes

<table>
<thead>
<tr>
<th>Nominal Maximum Size* mm (in.)</th>
<th>Minimum Mass g (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 (3 1/2)</td>
<td>175,000 (385)</td>
</tr>
<tr>
<td>75 (3)</td>
<td>150,000 (330)</td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>125,000 (275)</td>
</tr>
<tr>
<td>50 (2)</td>
<td>100,000 (220)</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>75,000 (165)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>50,000 (110)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>25,000 (55)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>15,000 (35)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>10,000 (25)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>10,000 (25)</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>10,000 (25)</td>
</tr>
</tbody>
</table>

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size. Maximum size is one size larger than nominal maximum size.

Note 1: Sample size is based upon the test(s) required. As a general rule, the field sample size should be such that, when split twice will provide a testing sample of proper size. For example, the sample size may be four times that shown in Table 1 of the FOP for AASHTO T 27/T 11, if that mass is more appropriate.

Procedure – Specific Situations

Conveyor Belts

Avoid sampling at the beginning or end of the aggregate run due to the potential for segregation. Be careful when sampling in the rain. Make sure to capture fines that may stick to the belt or that the rain tends to wash away.

Method A (From the Belt)

1. Stop the belt.
2. Set the sampling template in place on the belt, avoiding intrusion by adjacent material.
3. Remove the material from inside the template, including all fines.
4. Obtain at least three approximately equal increments.
5. Combine the increments to form a single sample.
Method B (From the Belt Discharge)

1. Pass a sampling device through the full stream of the material as it runs off the end of the conveyor belt. The sampling device may be manually, semi-automatic or automatically powered.
2. The sampling device shall pass through the stream at least twice, once in each direction, without overfilling while maintaining a constant speed during the sampling process.
3. When emptying the sampling device into the container, include all fines.
4. Combine the increments to form a single sample.

Transport Units

1. Visually divide the unit into four quadrants.
2. Identify one sampling location in each quadrant.
3. Dig down and remove approximately 0.3 m (1 ft.) of material to avoid surface segregation. Obtain each increment from below this level.
4. Combine the increments to form a single sample.

Roadways

Method A (Berm or Windrow)

- Obtain sample before spreading.
- Take the increments from at least three random locations along the fully formed windrow or berm. Do not take the increments from the beginning or the end of the windrow or berm.
- Obtain full cross-section samples of approximately equal size at each location. Take care to exclude the underlying material.
- Combine the increments to form a single sample.

Note 2: Obtaining samples from berms or windrows may yield extra-large samples and may not be the preferred sampling location.

Method B (In-Place)

- Obtain sample after spreading and before compaction.
- Take the increments from at least three random locations.
- Obtain full-depth increments of approximately equal size from each location. Take care to exclude the underlying material.
- Combine the increments to form a single sample.
Stockpiles

Method A – Loader Sampling

1. Direct the loader operator to enter the stockpile with the bucket at least 150 mm (6 in.) above ground level without contaminating the stockpile.
2. Discard the first bucketful.
3. Have the loader re-enter the stockpile and obtain a full loader bucket of the material, tilt the bucket back and up.
4. Form a small sampling pile at the base of the stockpile by gently rolling the material out of the bucket with the bucket just high enough to permit free-flow of the material. (Repeat as necessary.)
5. Create a flat surface by having the loader back drag the small pile.
6. Visually divide the flat surface into four quadrants.
7. Collect an increment from each quadrant by fully inserting the shovel into the flat pile as vertically as possible, take care to exclude the underlying material, roll back the shovel and lift the material slowly out of the pile to avoid material rolling off the shovel.

Method B – Stockpile Face Sampling

1. Create horizontal surfaces with vertical faces in the top, middle, and bottom third of the stockpile with a shovel or loader.
2. Prevent continued sloughing by shoving a flat board against the vertical face. Sloughed material will be discarded to create the horizontal surface.
3. Obtain sample from the horizontal surface as close to the intersection as possible of the horizontal and vertical faces.
4. Obtain at least one increment of equal size from each of the top, middle, and bottom thirds of the pile.
5. Combine the increments to form a single sample.

Method C – Alternate Tube Method (Fine Aggregate)

1. Remove the outer layer that may have become segregated.
2. Using a sampling tube, obtain one increment of equal size from a minimum of five random locations on the pile.
3. Combine the increments to form a single sample.
Identification and Shipping

- Identify samples according to agency standards.
- Include sample report (below).
- Ship samples in containers that will prevent loss, contamination, or damage of material.

Report

- On forms approved by the agency
- Date
- Time
- Sample ID
- Sampling method
- Location
- Quantity represented
- Material type
- Supplier
REDUCING SAMPLES OF AGGREGATE TO TESTING SIZE
FOP FOR AASHTO R 76

Scope

This procedure covers the reduction of samples to the appropriate size for testing in accordance with AASHTO R 76-16. Techniques are used that minimize variations in characteristics between test samples and field samples. Method A (Mechanical Splitter) and Method B (Quartering) are covered.

This FOP applies to fine aggregate (FA), coarse aggregate (CA), and mixes of the two (FA / CA) and may also be used on soils.

Apparatus

Method A – Mechanical Splitter

Splitter chutes:

- Even number of equal width chutes
- Discharge alternately to each side
- Minimum of 8 chutes total for CA and FA / CA, 12 chutes total for FA
- Width:
 - Minimum 50 percent larger than largest particle
 - Maximum chute width of 19 mm (3/4 in.) for fine aggregate passing the 9.5 mm (3/8 in.) sieve

Feed control:

- Hopper or straightedge pan with a width equal to or slightly less than the overall width of the assembly of chutes
- Capable of feeding the splitter at a controlled rate

Splitter receptacles / pans:

- Capable of holding two halves of the sample following splitting

The splitter and accessory equipment shall be so designed that the sample will flow smoothly without restriction or loss of material.
Method B – Quartering

- Straightedge scoop, shovel, or trowel
- Broom or brush
- Canvas or plastic sheet, appropriate for the amount and size of the material being reduced

Method Selection

Samples of CA may be reduced by either Method A or Method B.

Samples of FA which are drier than the saturated surface dry (SSD) condition, as described in AASHTO T 84, shall be reduced by a mechanical splitter according to Method A. As a quick approximation, if the fine aggregate will retain its shape when molded with the hand, it is wetter than SSD.

Samples of FA / CA which are drier than SSD may be reduced by Method A or Method B.

Samples of FA and FA / CA that are at SSD or wetter than SSD shall be reduced by Method B, or the entire sample may be dried – using temperatures that do not exceed those specified for any of the tests contemplated – and then reduced to test sample size using Method A.

<table>
<thead>
<tr>
<th></th>
<th>Drier than SSD</th>
<th>Wetter than SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Aggregate (FA)</td>
<td>Method A (Mechanical)</td>
<td>Method B (Quartering)</td>
</tr>
<tr>
<td>Mixture of FA/CA</td>
<td>Either Method</td>
<td>Method B (Quartering)</td>
</tr>
<tr>
<td>Coarse Aggregate (CA)</td>
<td>Either Method</td>
<td>Either Method</td>
</tr>
</tbody>
</table>
Procedure

Method A – Mechanical Splitter

1. Place two clean empty receptacles under the splitter.
2. Empty the sample into the hopper or pan without loss of material.
3. Uniformly distribute the material in the hopper or pan from edge to edge so that approximately equal amounts flow through each chute.
4. Discharge the material at a uniform rate, allowing it to flow freely through the chutes.
5. Remove any material retained on the surface of the splitter and place into the appropriate receptacle.
6. Using one of the two receptacles containing material, repeat Steps 1 through 6 until the material in one of the two receptacles is the appropriate sample size for the required test.
7. Retain and properly identify the remaining unused sample for further testing if required.

Mechanical Splitter Check

- Determine the mass of each reduced portion. If the percent difference of the two masses is greater than 5 percent, corrective action must be taken.

Calculation

\[
\frac{\text{Smaller Mass}}{\text{Larger Mass}} = \text{Ratio} \quad (1 - \text{ratio}) \times 100 = \% \text{Difference}
\]

Splitter check: 5127 g total sample mass
Splitter pan #1: 2583 g
Splitter pan #2: 2544 g

\[
\frac{2544 \text{ g}}{2583 \text{ g}} = 0.985 \quad (1 - 0.985) \times 100 = 1.5\%
\]
Alternative to Mechanical Splitter Check

- In lieu of determining the mass of each reduced portion, use the method illustrated in Figure 1 or 2 during reduction.

Figure 1

- Sample (S) is an amount greater than or equal to twice the mass needed for testing. Sample (S) is reduced in a mechanical splitter to yield parts (1) and (2).
- Part (1) is further reduced yielding (A) and (B) while part (2) is reduced to yield (B) and (A).
- Final testing sample is produced by combining alternate pans, i.e. A/A or B/B only.

Figure 2

Sample (S) is an amount greater or equal to twice the mass needed for testing. Sample (S) is reduced in a mechanical splitter to yield parts (1) and (2).

Part (1) is further reduced, yielding (A) and (B).

Switch pans (A) and (B) so that they are now in the opposite sides of the mechanical splitter, leaving the material from Part (1) in the pans. Reduce part (2) into pans (A) and (B).
Method B – Quartering

Use either of the following two procedures or a combination of both.

Procedure 1: Quartering on a clean, hard, level surface:

1. Place the sample on a hard, clean, level surface where there will be neither loss of material nor the accidental addition of foreign material.

2. Mix the material thoroughly by turning the entire sample over a minimum of four times. With the last turning, shovel the entire sample into a conical pile by depositing each shovelful on top of the preceding one.

3. Flatten the conical pile to a uniform thickness and diameter by pressing down with a shovel. The diameter should be four to eight times the thickness.

4. Divide the flattened pile into four approximately equal quarters with a shovel or trowel.

5. Remove two diagonally opposite quarters, including all fine material, and brush the cleared spaces clean.

6. Successively mix and quarter the remaining material until the sample is reduced to the desired size.

7. The final test sample consists of two diagonally opposite quarters.

Procedure 2: Quartering on a canvas or plastic sheet:

1. Place the sample on the sheet.

2. Mix the material thoroughly a minimum of four times by pulling each corner of the sheet horizontally over the sample toward the opposite corner. After the last turn, form a conical pile.

3. Flatten the conical pile to a uniform thickness and diameter by pressing down with a shovel. The diameter should be four to eight times the thickness.

4. Divide the flattened pile into four approximately equal quarters with a shovel or trowel, or, insert a stick or pipe beneath the sheet and under the center of the pile, then lift both ends of the stick, dividing the sample into two roughly equal parts. Remove the stick leaving a fold of the sheet between the divided portions. Insert the stick under the center of the pile at right angles to the first division and again lift both ends of the stick, dividing the sample into four roughly equal quarters.

5. Remove two diagonally opposite quarters, being careful to clean the fines from the sheet.
6. Successively mix and quarter the remaining material until the sample size is reduced to the desired size.

7. The final test sample consists of two diagonally opposite quarters.
TOTAL EVAPORABLE MOISTURE CONTENT OF AGGREGATE BY DRYING FOP FOR AASHTO T 255

Scope

This procedure covers the determination of moisture content of aggregate in accordance with AASHTO T 255-00. It may also be used for other construction materials.

Overview

Moisture content is determined by comparing the wet mass of a sample and the mass of the sample after drying to constant mass. The term constant mass is used to define when a sample is dry.

Constant mass – the state at which a mass does not change more than a given percent, after additional drying for a defined time interval, at a required temperature.

Apparatus

- Balance or scale: Capacity sufficient for the principle sample mass, accurate to 0.1 percent of sample mass or readable to 0.1 g, meeting the requirements of AASHTO M 231.
- Containers: clean, dry and capable of being sealed
- Suitable drying containers
- Microwave safe container with ventilated lids
- Heat source, controlled
 - Forced draft oven
 - Ventilated oven
 - Convection oven
- Heat source, uncontrolled
 - Infrared heater, hot plate, fry pan, or any other device/method that will dry the sample without altering the material being dried
 - Microwave oven (900 watts minimum)
- Hot pads or gloves
- Utensils such as spoons
Sample Preparation

In accordance with the FOP for AASHTO R 90 obtain a representative sample in its existing condition. The representative sample size is based on Table 1 or other information that may be specified by the agency.

TABLE 1
Sample Sizes for Moisture Content of Aggregate

<table>
<thead>
<tr>
<th>Nominal Maximum Size* (mm (in.))</th>
<th>Minimum Sample Mass (g (lb))</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 (6)</td>
<td>50,000 (110)</td>
</tr>
<tr>
<td>100 (4)</td>
<td>25,000 (55)</td>
</tr>
<tr>
<td>90 (3 1/2)</td>
<td>16,000 (35)</td>
</tr>
<tr>
<td>75 (3)</td>
<td>13,000 (29)</td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>10,000 (22)</td>
</tr>
<tr>
<td>50 (2)</td>
<td>8000 (18)</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>6000 (13)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>4000 (9)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>3000 (7)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>2000 (4)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>1500 (3.3)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>500 (1.1)</td>
</tr>
</tbody>
</table>

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Immediately seal or cover samples to prevent any change in moisture content or follow the steps in “Procedure.”
Procedure

Determine all masses to the nearest 0.1 percent of the sample mass or to the nearest 0.1 g.

When determining the mass of hot samples or containers or both, place and tare a buffer between the sample container and the balance. This will eliminate damage to or interference with the operation of the balance or scale.

1. Determine and record the mass of the container (and lid for microwave drying).

2. Place the wet sample in the container.
 a. For oven(s), hot plates, infrared heaters, etc.: Spread the sample in the container.
 b. For microwave oven: Heap sample in the container; cover with ventilated lid.

3. Determine and record the total mass of the container and wet sample.

4. Determine and record the wet mass of the sample (MW) by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 3.

5. Place the sample in one of the following drying apparatus:
 b. Uncontrolled heat source (Hot plate, infrared heater, etc.): Stir frequently to avoid localized overheating.

6. Dry until sample appears moisture free.

7. Determine mass of sample and container.

8. Determine and record the mass of the sample by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 7.

9. Return sample and container to the heat source for additional drying.
 a. Controlled (oven): 30 minutes
 b. Uncontrolled (Hot plate, infrared heater, etc.): 10 minutes
 c. Uncontrolled (Microwave oven): 2 minutes

Caution: Some minerals in the sample may cause the aggregate to overheat, altering the aggregate gradation.

10. Determine mass of sample and container.
11. Determine and record the mass of the sample by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 10.

12. Determine percent change by subtracting the new mass determination \((M_n)\) from the previous mass determination \((M_p)\) divide by the previous mass determination \((M_p)\) multiply by 100.

13. Continue drying, performing steps 9 through 12, until there is less than a 0.10 percent change after additional drying time.

14. Constant mass has been achieved; sample is defined as dry.

15. Allow the sample to cool. Determine and record the total mass of the container and dry sample.

16. Determine and record the dry mass of the sample \((M_D)\) by subtracting the mass of the container determined in Step 1 from the mass of the container and sample determined in Step 15.

17. Determine and record percent moisture \((w)\) by subtracting the final dry mass determination \((M_D)\) from the initial wet mass determination \((M_W)\) divide by the final dry mass determination \((M_D)\) multiply by 100.

TABLE 2

Methods of Drying

<table>
<thead>
<tr>
<th>Heat Source</th>
<th>Specific Instructions</th>
<th>Drying intervals to achieve constant mass (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forced Draft Oven (preferred), Ventilated Oven, or Convection Oven</td>
<td>110 ±5°C (230 ±9°F)</td>
<td>30</td>
</tr>
<tr>
<td>Uncontrolled:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot plate, Infrared heater, etc.</td>
<td>Stir frequently</td>
<td>10</td>
</tr>
<tr>
<td>Microwave</td>
<td>Heap sample and cover with ventilated lid</td>
<td>2</td>
</tr>
</tbody>
</table>
Calculation

Constant Mass:

Calculate constant mass using the following formula:

\[\% \text{ Change} = \frac{M_p - M_n}{M_p} \times 100 \]

where:

- \(M_p \) = previous mass measurement
- \(M_n \) = new mass measurement

Example:

Mass of container: 1232.1 g

Mass of container after first drying cycle: 2637.2 g

Mass, \(M_p \), of possibly dry sample: 2637.2 g - 1232.1 g = 1405.1 g

Mass of container and sample after second drying cycle: 2634.1 g

Mass, \(M_n \), of sample: 2634.1 g - 1232.1 g = 1402.0 g

\[\% \text{ Change} = \frac{1405.1 \text{ g} - 1402.0 \text{ g}}{1405.1 \text{ g}} \times 100 = 0.22\% \]

0.22 percent is not less than 0.10 percent, so continue drying

Mass of container and sample after third drying cycle: 2633.0 g

Mass, \(M_n \), of sample: 2633.0 g - 1232.1 g = 1400.9 g

\[\% \text{ Change} = \frac{1402.0 \text{ g} - 1400.9 \text{ g}}{1402.0 \text{ g}} \times 100 = 0.08\% \]

0.08 percent is less than 0.10 percent, so constant mass has been reached
Moisture Content:

Calculate the moisture content, w, as a percent, using the following formula:

\[w = \frac{M_W - M_D}{M_D} \times 100 \]

where:

- \(w \) = moisture content, percent
- \(M_W \) = wet mass
- \(M_D \) = dry mass

Example:

Mass of container: 1232.1 g
Mass of container and wet sample: 2764.7 g
Mass, \(M_W \), of wet sample: 2764.7 g - 1232.1 g = 1532.6 g
Mass of container and dry sample (COOLED): 2633.5 g
Mass, \(M_D \), of dry sample: 2633.5 g - 1232.1 g = 1401.4 g

\[w = \frac{1532.6 \text{ g} - 1401.4 \text{ g}}{1401.4 \text{ g}} \times 100 = \frac{131.7 \text{ g}}{1401.4 \text{ g}} = 9.40\% \text{ report 9.4\%} \]

Report

- On forms approved by the agency
- Sample ID
- \(M_W \), wet mass
- \(M_D \), dry mass
- Moisture content to the nearest 0.1 percent
SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES
FOP FOR AASHTO T 27
MATERIALS FINER THAN 75 µM (NO. 200) SIEVE IN MINERAL AGGREGATE
BY WASHING
FOP FOR AASHTO T 11

Scope
A sieve analysis, or ‘gradation,’ measures distribution of aggregate particle sizes within a given sample.

Accurate determination of the amount of material smaller than 75 µm (No. 200) cannot be made using just AASHTO T 27. If quantifying this material is required, use AASHTO T 11 in conjunction with AASHTO T 27.

This FOP covers sieve analysis in accordance with AASHTO T 27-20 and materials finer than 75 µm (No. 200) in accordance with AASHTO T 11-20 performed in conjunction with AASHTO T 27. The procedure includes three methods: A, B, and C.

Apparatus
- Balance or scale: Capacity sufficient for the masses shown in Table 1, accurate to 0.1 percent of the sample mass or readable to 0.1 g, and meeting the requirements of AASHTO M 231
- Sieves: Meeting the requirements of ASTM E11
- Mechanical sieve shaker: Meeting the requirements of AASHTO T 27
- Suitable drying equipment (refer to FOP for AASHTO T 255)
- Containers and utensils: A pan or vessel of sufficient size to contain the sample covered with water and permit vigorous agitation without loss of material or water
- Optional
 - Mechanical washing device
 - Mallet: With a rubber or rawhide head having a mass of 0.57 ±0.23 kg (1.25 ±0.5 lb)

Sample Sieving
- In all procedures, the sample is shaken in nested sieves. Sieves are selected to furnish information required by specification. Intermediate sieves are added for additional information or to avoid overloading sieves, or both.
- The sieves are nested in order of increasing size from the bottom to the top, and the sample, or a portion of the sample, is placed on the top sieve.
- The loaded sieves are shaken in a mechanical shaker for approximately 10 minutes, refer to Annex A, *Time Evaluation.*
• Care must be taken so that sieves are not overloaded, refer to Annex B, Overload Determination. The sample may be sieved in increments and the mass retained for each sieve added together from each sample increment to avoid overloading sieves.

Sample Preparation

Obtain samples according to the FOP for AASHTO R 90 and reduce to sample size, shown in Table 1, according to the FOP for AASHTO R 76.

<table>
<thead>
<tr>
<th>Nominal Maximum Size* mm (in.)</th>
<th>Minimum Dry Mass g (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 (5)</td>
<td>300,000 (660)</td>
</tr>
<tr>
<td>100 (4)</td>
<td>150,000 (330)</td>
</tr>
<tr>
<td>90 (3 1/2)</td>
<td>100,000 (220)</td>
</tr>
<tr>
<td>75 (3)</td>
<td>60,000 (130)</td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>35,000 (77)</td>
</tr>
<tr>
<td>50 (2)</td>
<td>20,000 (44)</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>15,000 (33)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>10,000 (22)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>5000 (11)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>2000 (4)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>1000 (2)</td>
</tr>
<tr>
<td>6.3 (1/4)</td>
<td>1000 (2)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>500 (1)</td>
</tr>
</tbody>
</table>

*Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps between specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Sample sizes in Table 1 are standard for aggregate sieve analysis, due to equipment restraints samples may need to be divided into several “subsamples.” For example, a gradation that requires 100 kg (220 lbs.) of material would not fit into a large tray shaker all at once.

Some agencies permit reduced sample sizes if it is proven that doing so is not detrimental to the test results. Some agencies require larger sample sizes. Check agency guidelines for required or permitted sample sizes.
Selection of Procedure

Agencies may specify which method to perform. If a method is not specified, perform Method A.

Overview

Method A

- Determine original dry mass of the sample
- Wash over a 75μm (No. 200) sieve
- Determine dry mass of washed sample
- Sieve washed sample
- Calculate and report percent retained and passing each sieve

Method B

- Determine original dry mass of the sample
- Wash over a 75 μm (No. 200) sieve
- Determine dry mass of washed sample
- Sieve sample through coarse sieves, 4.75 mm (No. 4) sieves and larger
- Determine mass of fine material, minus 4.75 mm (No. 4)
- Reduce fine material
- Determine mass of reduced portion
- Sieve reduced portion
- Calculate and report percent retained and passing each sieve

Method C

- Determine original dry mass of the sample
- Sieve sample through coarse sieves, 4.75 mm (No. 4) sieves and larger
- Determine mass of fine material, minus 4.75 mm (No. 4)
- Reduce fine material
- Determine mass of reduced portion
- Wash reduced portion over a 75μm (No. 200) sieve
- Determine dry mass of washed reduced portion
- Sieve washed reduced portion
- Calculate and report percent retained and passing each sieve
Procedure Method A

1. Dry the sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the original dry mass of the sample to the nearest 0.1 percent or 0.1 g. Designate this mass as M.

 When the specification does not require the amount of material finer than 75 µm (No. 200) be determined by washing, skip to Step 11.

2. Nest a sieve, such as a 2.0 mm (No. 10), above the 75 µm (No. 200) sieve.

3. Place the sample in a container and cover with water.

 Note 1: A detergent, dispersing agent, or other wetting solution may be added to the water to assure a thorough separation of the material finer than the 75 µm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.

4. Agitate vigorously to ensure complete separation of the material finer than 75 µm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. Avoid degradation of the sample when using a mechanical washing device.

 Note 2: Washing longer than 10 minutes in a mechanical washer has been shown to cause significant amounts of degradation depending upon aggregate type.

5. Immediately pour the wash water containing the suspended material over the nested sieves; be careful not to pour out the coarser particles or over fill the 75 µm (No. 200) sieve.

6. Add water to cover material remaining in the container, agitate, and repeat Step 5. Continue until the wash water is reasonably clear.

7. Remove the upper sieve and return material retained to the washed sample.

8. Rinse the material retained on the 75 µm (No. 200) sieve until water passing through the sieve is reasonably clear and detergent or dispersing agent is removed, if used.

9. Return all material retained on the 75 µm (No. 200) sieve to the container by rinsing into the washed sample.

 Note 3: Excess water may be carefully removed with a bulb syringe; the removed water must be discharged back over the 75 µm (No. 200) sieve to prevent loss of fines.

10. Dry the washed sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the dry mass of the sample.

11. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 75 µm (No. 200).

12. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker, if not place sieves in mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

 Note 4: Excessive shaking (more than 10 minutes) may result in degradation of the sample.
13. Determine and record the individual or cumulative mass retained for each sieve and in the pan. Ensure that all material trapped in full openings of the sieve are removed and included in the mass retained.

Note 5: For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.

Note 6: In the case of coarse / fine aggregate mixtures, distribute the minus 4.75 mm (No. 4) among two or more sets of sieves to prevent overloading of individual sieves.

14. Perform the *Check Sum* calculation – Verify the total mass after sieving agrees with the dry mass before sieving to within 0.3 percent. The dry mass before sieving is the dry mass after wash or the original dry mass \(M \) if performing the sieve analysis without washing. Do not use test results for acceptance if the Check Sum result is greater than 0.3 percent.

15. Calculate the total percentages passing, and the individual or cumulative percentages retained to the nearest 0.1 percent by dividing the individual sieve masses or cumulative sieve masses by the original dry mass \(M \) of the sample.

16. Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.

Method A Calculations

Check Sum

\[
\text{Check Sum} = \frac{\text{dry mass before sieving} - \text{total mass after sieving}}{\text{dry mass before sieving}} \times 100
\]

Percent Retained

\[
IPR = \frac{IMR}{M} \times 100 \quad \text{or} \quad CPR = \frac{CMR}{M} \times 100
\]

Where:

- **IPR** = Individual Percent Retained
- **CPR** = Cumulative Percent Retained
- **M** = Original dry mass of the sample
- **IMR** = Individual Mass Retained
- **CMR** = Cumulative Mass Retained
Percent Passing (PP)

\[PP = PPP - IPR \quad \text{or} \quad PP = 100 - CPR \]

Where:

\[PP = \text{Percent Passing} \]
\[PPP = \text{Previous Percent Passing} \]

Method A Example Individual Mass Retained

Original dry mass of the sample \((M)\): 5168.7 g
Dry mass of the sample after washing: 4911.3 g
Total mass after sieving equals

Sum of Individual Masses Retained (IMR),
including minus 75 µm (No. 200) in the pan: 4905.9 g
Amount of 75 µm (No. 200) minus washed out (5168.7 g – 4911.3 g): 257.4 g

Check Sum

\[
\text{Check Sum} = \frac{4911.3 \ g - 4905.9 \ g}{4911.3 \ g} \times 100 = 0.1\%
\]

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Individual Percent Retained (IPR) for 9.5 mm (3/8 in.) sieve:

\[
IPR = \frac{619.2 \ g}{5168.7 \ g} \times 100 = 12.0\%
\]

Percent Passing (PP) 9.5 mm (3/8 in.) sieve:

\[
PP = 86.0\% - 12.0\% = 74.0\%
\]

Reported Percent Passing = 74%
Method A Individual Grading on All Sieves

<table>
<thead>
<tr>
<th>Sieve Size (mm) (in.)</th>
<th>Individual Mass Retained (g) (IMR)</th>
<th>Determine IPR Divide IMR by M and multiply by 100</th>
<th>Individual Percent Retained (IPR)</th>
<th>Determine PP by subtracting IPR from Previous PP</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.0 (3/4)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>724.7</td>
<td>$\frac{724.7}{5168.7} \times 100 = 14.0$</td>
<td>14.0</td>
<td>$100.0 - 14.0 = 86.0$</td>
<td>86.0</td>
<td>86</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>619.2</td>
<td>$\frac{619.2}{5168.7} \times 100 = 12.0$</td>
<td>12.0</td>
<td>$86.0 - 12.0 = 74.0$</td>
<td>74.0</td>
<td>74</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1189.8</td>
<td>$\frac{1189.8}{5168.7} \times 100 = 23.0$</td>
<td>23.0</td>
<td>$74.0 - 23.0 = 51.0$</td>
<td>51.0</td>
<td>51</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>877.6</td>
<td>$\frac{877.6}{5168.7} \times 100 = 17.0$</td>
<td>17.0</td>
<td>$51.0 - 17.0 = 34.0$</td>
<td>34.0</td>
<td>34</td>
</tr>
<tr>
<td>1.18 (No. 16)</td>
<td>574.8</td>
<td>$\frac{574.8}{5168.7} \times 100 = 11.1$</td>
<td>11.1</td>
<td>$34.0 - 11.1 = 22.9$</td>
<td>22.9</td>
<td>23</td>
</tr>
<tr>
<td>0.600 (No. 30)</td>
<td>329.8</td>
<td>$\frac{329.8}{5168.7} \times 100 = 6.4$</td>
<td>6.4</td>
<td>$22.9 - 6.4 = 16.5$</td>
<td>16.5</td>
<td>17</td>
</tr>
<tr>
<td>0.300 (No. 50)</td>
<td>228.5</td>
<td>$\frac{228.5}{5168.7} \times 100 = 4.4$</td>
<td>4.4</td>
<td>$16.5 - 4.4 = 12.1$</td>
<td>12.1</td>
<td>12</td>
</tr>
<tr>
<td>0.150 (No. 100)</td>
<td>205.7</td>
<td>$\frac{205.7}{5168.7} \times 100 = 4.0$</td>
<td>4.0</td>
<td>$12.1 - 4.0 = 8.1$</td>
<td>8.1</td>
<td>8</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>135.4</td>
<td>$\frac{135.7}{5168.7} \times 100 = 2.6$</td>
<td>2.6</td>
<td>$8.1 - 2.6 = 5.5$</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>minus 0.075 (No. 200) in the pan</td>
<td>20.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total mass after sieving = sum of sieves + mass in the pan = 4905.9 g

Original dry mass of the sample (M): 5168.7 g

* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Method A Example Cumulative Mass Retained

Original dry mass of the sample \((M)\): 5168.7 g

Dry mass of the sample after washing: 4911.3 g

Total mass after sieving equals Final Cumulative Mass Retained (FCMR) (includes minus 75 µm (No. 200) from the pan): 4905.9 g

Amount of 75µm (No. 200) minus washed out \((5168.7 \text{ g} - 4911.3 \text{ g})\): 257.4 g

Check Sum

\[
\text{Check Sum} = \frac{4911.3 \text{ g} - 4905.9 \text{ g}}{4911.3 \text{ g}} \times 100 = 0.1\%
\]

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Cumulative Percent Retained (CPR) for 9.5 mm (3/8 in.) sieve:

\[
CPR = \frac{1343.9 \text{ g}}{5168.7 \text{ g}} \times 100 = 26.0\%
\]

Percent Passing (PP) 9.5 mm (3/8 in.) sieve:

\[
PP = 100.0\% - 26.0\% = 74.0\%
\]

Reported Percent Passing = 74%
Method A Cumulative Gradation on All Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained g (CMR)</th>
<th>Determine CPR by dividing CMR by M and multiplying by 100</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Determine PP by subtracting CPR from 100.0</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.0 (3/4)</td>
<td>0</td>
<td>0.0</td>
<td>100.0</td>
<td></td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>724.7</td>
<td>14.0</td>
<td>100.0 − 14.0</td>
<td></td>
<td>86.0</td>
<td>86</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>1343.9</td>
<td>26.0</td>
<td>100.0 − 26.0</td>
<td></td>
<td>74.0</td>
<td>74</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>2533.7</td>
<td>49.0</td>
<td>100.0 − 49.0</td>
<td></td>
<td>51.0</td>
<td>51</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>3411.3</td>
<td>66.0</td>
<td>100.0 − 66.0</td>
<td></td>
<td>34.0</td>
<td>34</td>
</tr>
<tr>
<td>1.18 (No. 16)</td>
<td>3986.1</td>
<td>77.1</td>
<td>100.0 − 77.1</td>
<td></td>
<td>22.9</td>
<td>23</td>
</tr>
<tr>
<td>0.600 (No. 30)</td>
<td>4315.9</td>
<td>83.5</td>
<td>100.0 − 83.5</td>
<td></td>
<td>16.5</td>
<td>17</td>
</tr>
<tr>
<td>0.300 (No. 50)</td>
<td>4544.4</td>
<td>87.9</td>
<td>100.0 − 87.9</td>
<td></td>
<td>12.1</td>
<td>12</td>
</tr>
<tr>
<td>0.150 (No. 100)</td>
<td>4750.1</td>
<td>91.9</td>
<td>100.0 − 91.9</td>
<td></td>
<td>8.1</td>
<td>8</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>4885.5</td>
<td>94.5</td>
<td>100.0 − 94.5</td>
<td></td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>FCMR</td>
<td>4905.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total mass after sieving: 4905.9 g

Original dry mass of the sample (M): 5168.7 g

* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Procedure Method B

1. Dry the sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the original dry mass of the sample to the nearest 0.1 percent or 0.1 g. Designate this mass as \(M \).

 When the specification does not require the amount of material finer than 75 µm (No. 200) be determined by washing, skip to Step 11.

2. Nest a protective sieve, such as a 2.0 mm (No. 10), above the 75 µm (No. 200) sieve.

3. Place the sample in a container and cover with water.

 Note 1: A detergent, dispersing agent, or other wetting solution may be added to the water to assure a thorough separation of the material finer than the 75 µm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.

4. Agitate vigorously to ensure complete separation of the material finer than 75 µm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. Avoid degradation of the sample when using a mechanical washing device.

 Note 2: Washing longer than 10 minutes in a mechanical washer has been shown to cause significant amounts of degradation depending upon aggregate type.

5. Immediately pour the wash water containing the suspended material over the nested sieves; be careful not to pour out the coarser particles or over fill the 75 µm (No. 200) sieve.

6. Add water to cover material remaining in the container, agitate, and repeat Step 5. Continue until the wash water is reasonably clear.

7. Remove the upper sieve and return material retained to the washed sample.

8. Rinse the material retained on the 75 µm (No. 200) sieve until water passing through the sieve is reasonably clear and detergent or dispersing agent is removed, if used.

9. Return all material retained on the 75 µm (No. 200) sieve to the container by rinsing into the washed sample.

 Note 3: Excess water may be carefully removed with a bulb syringe; the removed water must be discharged back over the 75 µm (No. 200) sieve to prevent loss of fines.

10. Dry the washed sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the dry mass after wash.

11. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 4.75 mm (No. 4).

12. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker, if not place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

 Note 4: Excessive shaking (more than 10 minutes) may result in degradation of the sample.
13. Determine and record the individual or cumulative mass retained for each sieve. Ensure that all particles trapped in full openings of the sieve are removed and included in the mass retained.

Note 5: For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft hair bristle for smaller sieves.

14. Determine and record the mass of the minus 4.75 mm (No. 4) material in the pan. Designate this mass as M_1.

15. Perform the *Coarse Check Sum* calculation – Verify the total mass after coarse sieving agrees with the dry mass before sieving to within 0.3 percent. The dry mass before sieving is the dry mass after wash or the original dry mass (M) if performing the sieve analysis without washing. Do not use test results for acceptance if the Check Sum result is greater than 0.3 percent.

16. Reduce the minus 4.75 mm (No. 4) according to the FOP for AASHTO R 76 to produce a sample with a minimum mass of 500 g. Determine and record the mass of the minus 4.75 mm (No. 4) split, designate this mass as M_2.

17. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 75 µm (No. 200) up to, but not including, the 4.75 mm (No. 4) sieve.

18. Place the sample portion on the top sieve and place the sieves in the mechanical shaker. Shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

19. Determine and record the individual or cumulative mass retained for each sieve and in the pan. Ensure that all particles trapped in full openings of the sieve are removed and included in the mass retained.

Note 6: For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft hair bristle for smaller sieves.

20. Perform the *Fine Check Sum* calculation – Verify the total mass after sieving agrees with the dry mass before sieving (M_2) to within 0.3 percent. Do not use test results for acceptance if the Check Sum result is greater than 0.3 percent.

21. Calculate to the nearest 0.1 percent, the Individual Mass Retained (IMR) or Cumulative Mass Retained (CMR) of the size increment of the reduced sample and the original sample.

22. Calculate the total percent passing.

23. Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Method B Calculations

Check Sum

\[\text{Coarse Check Sum} = \frac{\text{dry mass before sieving} - \text{total mass after coarse sieving}}{\text{dry mass before sieving}} \times 100 \]

\[\text{Fine Check Sum} = \frac{M_2 - \text{total mass after fine sieving}}{M_2} \times 100 \]

Percent Retained for 4.75 mm (No. 4) and larger

\[IPR = \frac{IMR}{M} \times 100 \quad \text{or} \quad CPR = \frac{CMR}{M} \times 100 \]

Where:

- IPR = Individual Percent Retained
- CPR = Cumulative Percent Retained
- M = Original dry mass of the sample
- IMR = Individual Mass Retained
- CMR = Cumulative Mass Retained

Percent Passing (PP) for 4.75 mm (No. 4) and larger

\[PP = PPP - IPR \quad \text{or} \quad PP = 100 - CPR \]

Where:

- PP = Percent Passing
- PPP = Previous Percent Passing
Minus 4.75mm (No. 4) adjustment factor (R)

The mass of material retained for each sieve is multiplied by the adjustment factor, the total mass of the minus 4.75 mm (No. 4) from the pan, M_1, divided by the mass of the reduced split of minus 4.75 mm (No. 4), M_2. For consistency, this adjustment factor is carried to three decimal places.

$$ R = \frac{M_1}{M_2} $$

where:

- R = minus 4.75 mm (No. 4) adjustment factor
- M_1 = total mass of minus 4.75 mm (No. 4) before reducing
- M_2 = mass of the reduced split of minus 4.75 mm (No. 4)

Adjusted Individual Mass Retained (AIMR):

$$ AIMR = R \times B $$

where:

- AIMR = Adjusted Individual Mass Retained
- R = minus 4.75 mm (No. 4) adjustment factor
- B = individual mass of the size increment in the reduced portion sieved

Adjusted Cumulative Mass Retained (ACMR)

$$ ACMR = (R \times B) + D $$

where:

- ACMR = Adjusted Cumulative Mass Retained
- R = minus 4.75 mm (No. 4) adjustment factor
- B = cumulative mass of the size increment in the reduced portion sieved
- D = cumulative mass of plus 4.75mm (No. 4) portion of sample
Method B Example Individual Mass Retained

Dry mass of total sample, before washing: 3214.0 g
Dry mass of sample after washing: 3085.1 g

Total mass after sieving
- Sum of Individual Masses Retained (IMR) plus the minus 4.75 mm (No. 4) from the pan: 3085.0 g
- Amount of 75 µm (No. 200) minus washed out (3214.0 g – 3085.1 g): 128.9 g

Coarse Check Sum

\[
\text{Coarse Check Sum} = \frac{3085.1 g - 3085.0 g}{3085.1 g} \times 100 = 0.0%
\]

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Individual Percent Retained (IPR) for 9.5 mm (3/8 in.) sieve

\[
IPR = \frac{481.4 g}{3214.0 g} \times 100 = 15.0%
\]

Percent Passing (PP) for 9.5 mm (3/8 in.) sieve:

\[
PP = 95.0\% - 15.0\% = 80.0\%
\]

Reported Percent Passing = 80%
Method B Individual
Gradation on Coarse Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Individual Mass Retained g (IMR)</th>
<th>Determine IPR Divide IMR by M and multiply by 100</th>
<th>Individual Percent Retained (IPR)</th>
<th>Determine PP by subtracting IPR from Previous PP</th>
<th>Percent Passing (PP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100 0.0 − 5.0 = 95.0</td>
<td>95.0</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>161.1</td>
<td>161.1 3214.0 × 100 = 5.0</td>
<td>100.0 − 5.0 =</td>
<td>95.0</td>
<td>95.0</td>
</tr>
<tr>
<td>9.50 (3/8)</td>
<td>481.4</td>
<td>481.4 3214.0 × 100 = 15.0</td>
<td>95.0 − 15.0 =</td>
<td>80.0</td>
<td>80.0</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>475.8</td>
<td>475.8 3214.0 × 100 = 14.8</td>
<td>80.0 − 14.8 =</td>
<td>65.2</td>
<td>65.2</td>
</tr>
<tr>
<td>Minus 4.75 (No. 4)</td>
<td>1966.7 (M₁)</td>
<td>1966.7 (M₁)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total mass after sieving: sum of sieves + mass in the pan = 3085.0 g

Original dry mass of the sample (M): 3214.0 g

Fine Sample

The minus 4.75 mm (No. 4) from the pan, M₁ (1966.7 g), was reduced according to the FOP for AASHTO R 76, to at least 500 g. In this case, the reduced mass was determined to be 512.8 g. This is M₂.

The reduced mass was sieved.

Total mass after sieving equals

Sum of Individual Masses Retained (IMR) including minus 75 µm (No. 200) in the pan 511.8 g
Fine Check Sum

\[
\text{Fine Check Sum} = \frac{512.8 \text{ g} - 511.8 \text{ g}}{512.8 \text{ g}} \times 100 = 0.2\%
\]

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Adjustment Factor (R) for Adjusted Individual Mass Retained (AIMR) on minus 4.75 (No. 4) sieves

The mass of material retained for each sieve is multiplied by the adjustment factor \(R \) carried to three decimal places.

\[
R = \frac{M_1}{M_2} = \frac{1,966.7 \text{ g}}{512.8 \text{ g}} = 3.835
\]

where:

- \(R \) = minus 4.75 mm (No. 4) adjustment factor
- \(M_1 \) = total mass of minus 4.75 mm (No. 4) from the pan
- \(M_2 \) = mass of the reduced split of minus 4.75 mm (No. 4)

Each “individual mass retained” on the fine sieves must be multiplied by \(R \) to obtain the Adjusted Individual Mass Retained.

Adjusted Individual Mass Retained (AIMR) for 2.00 mm (No. 10) sieve

\[
\text{AIMR} = 3.835 \times 207.1 \text{ g} = 794.2 \text{ g}
\]

Individual Percent Retained (IPR) for 2.00 mm (No. 10) sieve:

\[
\text{IPR} = \frac{794.2 \text{ g}}{3214.0 \text{ g}} \times 100 = 24.7\%
\]
Percent Passing (PP) 2 mm (No. 10) sieve:

\[PP = 65.2\% - 24.7\% = 40.5\% \]

Reported Percent Passing = 41%

Method B Individual Gradation on Fine Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Individual Mass Retained g (IMR)</th>
<th>Determine TIMR Multiply IMR by (R \left(\frac{M_1}{M_2} \right))</th>
<th>Total Individual Mass Retained (TIMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00 (No. 10)</td>
<td>207.1</td>
<td>(207.1 \times 3.835 =) 794.2</td>
<td></td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>187.9</td>
<td>(187.9 \times 3.835 =) 720.6</td>
<td></td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>59.9</td>
<td>(59.9 \times 3.835 =) 229.7</td>
<td></td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>49.1</td>
<td>(49.1 \times 3.835 =) 188.3</td>
<td></td>
</tr>
<tr>
<td>minus 0.075 (No. 200) in the pan</td>
<td>7.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total mass after sieving: sum of fine sieves + the mass in the pan = 511.8 g
Method B Individual
Final Gradation on All Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Total Individual Mass Retained g (TIMR)</th>
<th>Determine IPR Divide TIMR by M and multiply by 100</th>
<th>Individual Percent Retained (IPR)</th>
<th>Determine PP by subtracting IPR from Previous PP</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>161.1 $\times 100 = 161.1$</td>
<td>5.0</td>
<td>$100.0 - 5.0 = 95.0$</td>
<td>95.0</td>
<td>95</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>161.1</td>
<td>481.4 $\times 100 = 481.4$</td>
<td>15.0</td>
<td>$95.0 - 15.0 = 80.0$</td>
<td>80.0</td>
<td>80</td>
</tr>
<tr>
<td>9.50 (3/8)</td>
<td>481.4</td>
<td>475.8 $\times 100 = 475.8$</td>
<td>14.8</td>
<td>$80.0 - 14.8 = 65.2$</td>
<td>65.2</td>
<td>65</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>475.8</td>
<td>794.2 $\times 100 = 794.2$</td>
<td>24.7</td>
<td>$65.2 - 24.7 = 40.5$</td>
<td>40.5</td>
<td>41</td>
</tr>
<tr>
<td>2.00 (No. 10)</td>
<td>794.2</td>
<td>720.6 $\times 100 = 720.6$</td>
<td>22.4</td>
<td>$40.5 - 22.4 = 18.1$</td>
<td>18.1</td>
<td>18</td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>720.6</td>
<td>229.7 $\times 100 = 229.7$</td>
<td>7.1</td>
<td>$18.1 - 7.1 = 11.0$</td>
<td>11.0</td>
<td>11</td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>229.7</td>
<td>188.3 $\times 100 = 188.3$</td>
<td>5.9</td>
<td>$11.0 - 5.9 = 5.1$</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>minus 0.075 (No. 200) in the pan</td>
<td>188.3</td>
<td>29.9 $\times 100 = 29.9$</td>
<td>188.3 $\times 100 = 188.3$</td>
<td>0.075 $\times 100 = 0.075$</td>
<td>0.075</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Original dry mass of the sample \((M)\): 3214.0 g

* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Method B Example Cumulative Mass Retained

Original dry mass of the sample (M): \[3214.0 \text{ g} \]

Dry mass of sample after washing: \[3085.1 \text{ g} \]

Total mass after sieving equals

Cumulative Mass Retained (CMR) on the 4.75 (No. 4) plus the minus 4.75 mm (No. 4) in the pan: \[3085.0 \text{ g} \]

Amount of 75 µm (No. 200) minus washed out \((3214.0 \text{ g} - 3085.1 \text{ g})\): \[128.9 \text{ g} \]

Coarse Check Sum

\[
\text{Coarse Check Sum} = \frac{3085.1 \text{ g} - 3085.0 \text{ g}}{3085.1 \text{ g}} \times 100 = 0.0\%
\]

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Cumulative Percent Retained (CPR) for 9.5 mm (3/8 in.) sieve

\[
CPR = \frac{642.5 \text{ g}}{3214.0 \text{ g}} \times 100 = 20.0\%
\]

Percent Passing (PP) for 9.5 mm (3/8 in.) sieve

\[PP = 100.0\% - 20.0\% = 80.0\% \]

Reported Percent Passing = 80%
Method B Cumulative Gradation on Coarse Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained g (CMR)</th>
<th>Determine CPR: Divide CMR by M and multiply by 100</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Determine PP: by subtracting CPR from 100.0</th>
<th>Percent Passing (PP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>161.1</td>
<td>$\frac{161.1}{3214.0} \times 100 = 5.0$</td>
<td>100.0 − 5.0 = 95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.50 (3/8)</td>
<td>642.5</td>
<td>$\frac{642.5}{3214.0} \times 100 = 20.0$</td>
<td>100.0 − 20.0 = 80.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1118.3 (D)</td>
<td>$\frac{1118.3}{3214.0} \times 100 = 34.8$</td>
<td>100.0 − 34.8 = 65.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minus 4.75 (No. 4)</td>
<td>in the pan</td>
<td>1966.7 (M₁)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMR: 1118.3 + 1966.7 = 3085.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original dry mass of the sample (M): 3214.0 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fine Sample

The mass of minus 4.75 mm (No. 4) material in the pan, $M₁$ (1966.7 g), was reduced according to the FOP for AASHTO R 76, to at least 500 g. In this case, the reduced mass was determined to be **512.8 g**. This is $M₂$.

The reduced mass was sieved.

Total mass after fine sieving equals

$\text{Final Cumulative Mass Retained (FCMR) (includes minus 75 µm (No. 200) from the pan):}$
511.8 g

Fine Check Sum

$$Fine \ Check\ Sum = \frac{512.8 \ g - 511.8 \ g}{512.8 \ g} \times 100 = 0.2\%$$

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.
The cumulative mass of material retained for each sieve is multiplied by the adjustment factor \(R \) carried to three decimal places and added to the cumulative mass retained on the 4.75 mm (No. 4) sieve, \(D \), to obtain the Adjusted Cumulative Mass Retained (ACMR).

Adjustment factor \(R \) for Cumulative Mass Retained (CMR) in minus 4.75 (No. 4) sieves

\[
R = \frac{M_1}{M_2} = \frac{1,966.7 \text{ g}}{512.8 \text{ g}} = 3.835
\]

where:
- \(R \) = minus 4.75 mm (No. 4) adjustment factor
- \(M_1 \) = total mass of minus 4.75 mm (No. 4) from the pan
- \(M_2 \) = mass of the reduced split of minus 4.75 mm (No. 4)

Adjusted Cumulative Mass Retained (ACMR) for the 2.00 mm (No. 10) sieve

\[
ACMR = 3.835 \times 207.1 \text{ g} = 794.2 \text{ g}
\]

Total Cumulative Mass Retained (TCMR) for the 2.00 mm (No. 10) sieve

\[
TCMR = 794.2 \text{ g} + 1118.3 \text{ g} = 1912.5 \text{ g}
\]

Cumulative Percent Retained (CPR) for 2.00 mm (No. 10) sieve:

\[
CPR = \frac{1912.5 \text{ g}}{3214.0 \text{ g}} \times 100 = 59.5\%
\]

Percent Passing (PP) 2.00 mm (No. 10) sieve:

\[
PP = 100.0\% - 59.5\% = 40.5\%
\]

Reported Percent Passing = 41%
Method B Cumulative Gradation on Fine Sieves

<table>
<thead>
<tr>
<th>Sieve Size (mm (in.))</th>
<th>Cumulative Mass Retained, g (CMR)</th>
<th>Determine AIMR Multiply IMR by R ($\frac{M_1}{M_2}$) and adding D</th>
<th>Total Cumulative Mass Retained (TCMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00 (No. 10)</td>
<td>207.1</td>
<td>$207.1 \times 3.835 + 1118.3 =$</td>
<td>1912.5</td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>395.0</td>
<td>$395.0 \times 3.835 + 1118.3 =$</td>
<td>2633.1</td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>454.9</td>
<td>$454.9 \times 3.835 + 1118.3 =$</td>
<td>2862.8</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>504.0</td>
<td>$504.0 \times 3.835 + 1118.3 =$</td>
<td>3051.1</td>
</tr>
<tr>
<td>FCMR</td>
<td>511.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: sum of masses on fine sieves + minus 75 µm (No. 200) in the pan = 511.8
Method B Cumulative
Final Gradation on All Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained g (CMR)</th>
<th>Determine CPR Divide CMR by M and multiply by 100</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Determine PP by subtracting CPR from 100.0</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0</td>
<td>100.0</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>161.1</td>
<td>(\frac{161.1}{3214.0} \times 100 = 5.0)</td>
<td>100.0 − 5.0 = 95.0</td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>642.5</td>
<td>(\frac{642.5}{3214.0} \times 100 = 20.0)</td>
<td>100.0 − 20.0 = 80.0</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1118.3 (D)</td>
<td>(\frac{1118.3}{3214.0} \times 100 = 34.8)</td>
<td>100.0 − 34.8 = 65.2</td>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>2.00 (No. 10)</td>
<td>1912.5</td>
<td>(\frac{1912.5}{3214.0} \times 100 = 59.5)</td>
<td>100.0 − 59.5 = 40.5</td>
<td></td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>2633.1</td>
<td>(\frac{2633.1}{3214.0} \times 100 = 81.9)</td>
<td>100.0 − 81.9 = 18.1</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>2862.8</td>
<td>(\frac{2862.8}{3214.0} \times 100 = 89.1)</td>
<td>100.0 − 89.1 = 10.9</td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>3051.1</td>
<td>(\frac{3051.1}{3214.0} \times 100 = 94.9)</td>
<td>100.0 − 94.9 = 5.1</td>
<td></td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>FCMR</td>
<td>3081.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Original dry mass of the sample (M): 3214.0 g

* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Procedure Method C

1. Dry the sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the original dry mass of the sample to the nearest 0.1 percent or 0.1 g. Designate this mass as M.

2. Break up any aggregations or lumps of clay, silt, or adhering fines to pass the 4.75 mm (No. 4) sieve.

3. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 4.75 mm (No. 4) sieve.

4. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker, if not place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

 Note 1: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

5. Determine and record the cumulative mass retained for each sieve. Ensure that all material trapped in full openings of the sieve are removed and included in the mass retained.

 Note 2: For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft bristle brush for smaller sieves.

6. Determine and record the mass of the minus 4.75 mm (No. 4) material in the pan. Designate this mass as M_1.

7. Perform the *Coarse Check Sum* calculation—Verify the total mass after coarse sieving agrees with the original dry mass (M) within 0.3 percent.

8. Reduce the minus 4.75 mm (No. 4) according to the FOP for AASHTO R 76, to produce a sample with a minimum mass of 500 g.

9. Determine and record the mass of the minus 4.75 mm (No. 4) split, designate this mass as M_3.

10. Nest a protective sieve, such as a 2.0 mm (No. 10), above the 75 µm (No. 200) sieve.

11. Place the sample in a container and cover with water.

 Note 3: A detergent, dispersing agent, or other wetting solution may be added to the water to assure a thorough separation of the material finer than the 75 µm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.

12. Agitate vigorously to ensure complete separation of the material finer than 75 µm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. Avoid degradation of the sample when using a mechanical washing device.

 Note 4: Washing longer than 10 minutes in a mechanical washer has been shown to cause significant amounts of degradation depending upon aggregate type.
13. Immediately pour the wash water containing the suspended material over the nested sieves; be careful not to pour out the coarser particles or over fill the 75 µm (No. 200) sieve.

14. Add water to cover material remaining in the container, agitate, and repeat Step 12. Repeat until the wash water is reasonably clear.

15. Remove the upper sieve and return material retained to the washed sample.

16. Rinse the material retained on the 75 µm (No. 200) sieve until water passing through the sieve is reasonably clear and detergent or dispersing agent is removed, if used.

17. Return all material retained on the 75 µm (No. 200) sieve to the container by flushing into the washed sample.

Note 5: Excess water may be carefully removed with a bulb syringe; the removed water must be discharged back over the 75 µm (No. 200) sieve to prevent loss of fines.

18. Dry the washed sample portion to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the dry mass, designate this mass as dry mass before sieving.

19. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 75 µm (No. 200) sieve up to, but not including, the 4.75 mm (No. 4) sieve.

20. Place the sample portion on the top sieve. Place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

Note 6: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

21. Determine and record the cumulative mass retained for each sieve. Ensure that all material trapped in full openings of the sieve are removed and included in the mass retained.

Note 7: For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.

22. Perform the Fine Check Sum calculation – Verify the total mass after fine sieving agrees with the dry mass before sieving within 0.3 percent. Do not use test results for acceptance if the Check Sum is greater than 0.3 percent.

23. Calculate the Cumulative Percent Retained (CPR) and Percent Passing (PP) for the 4.75 mm (No. 4) and larger.

24. Calculate the Cumulative Percent Retained (CPR-#4) and the Percent Passing (PP-#4) for minus 4.75 mm (No. 4) split and Percent Passing (PP) for the minus 4.75 mm (No. 4).

25. Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Method C Calculations

Check Sum

Coarse check sum:
\[\text{Coarse check sum} = \frac{M - \text{total mass after coarse sieving}}{M} \times 100 \]

Fine check sum:
\[\text{Fine check sum} = \frac{\text{dry mass before sieving} - \text{total mass after fine sieving}}{\text{dry mass before sieving}} \times 100 \]

where:
\[M = \text{Original dry mass of the sample} \]

Cumulative Percent Retained (CPR) for 4.75 mm (No. 4) sieve and larger

\[CPR = \frac{CMR}{M} \times 100 \]

where:
\[\text{CPR} = \text{Cumulative Percent Retained of the size increment for the total sample} \]
\[\text{CMR} = \text{Cumulative Mass Retained of the size increment for the total sample} \]
\[M = \text{Total dry sample mass before washing} \]

Percent Passing (PP) 4.75 mm (No. 4) sieve and larger

\[PP = 100 - CPR \]

where:
\[\text{PP} = \text{Percent Passing of the size increment for the total sample} \]
\[\text{CPR} = \text{Cumulative Percent Retained of the size increment for the total sample} \]
Or, calculate PP for sieves larger than 4.75 mm (No. 4) sieve without calculating CPR

\[
\frac{M - CMR}{M} \times 100
\]

Cumulative Percent Retained (CPR-#4) for minus 4.75 mm (No. 4) split

\[
CPR_{-4} = \frac{CMR_{-4}}{M_3} \times 100
\]

where:
- CPR_{-4} = Cumulative Percent Retained for the sieve sizes of M3
- CMR_{-4} = Cumulative Mass Retained for the sieve sizes of M3
- M_3 = Total mass of the minus 4.75 mm (No. 4) split before washing

Percent Passing (PP_{#4}) for minus 4.75 mm (No. 4) split

\[
PP_{-4} = 100 - CPR_{-4}
\]

where:
- PP_{#4} = Percent Passing for the sieve sizes of M3
- CPR_{#4} = Cumulative Percent Retained for the sieve sizes of M3

Percent Passing (PP) for sieves smaller than 4.75 mm (No. 4) sieve

\[
PP = \frac{(PP_{-4} \times #4 PP)}{100}
\]

where:
- PP = Total Percent Passing
- PP_{#4} = Percent Passing for the sieve sizes of M3
- #4 PP = Total Percent Passing the 4.75 mm (No. 4) sieve
Or, calculate PP for sieves smaller than 4.75 mm (No. 4) sieve without calculating CPR-#4 and PP-#4

\[PP = \frac{\#4 \, PP}{M_3} \times (M_3 - CMR_{-#4}) \]

where:
- PP = Total Percent Passing
- #4 PP = Total Percent Passing the 4.75 mm (No. 4) sieve
- M₃ = Total mass of the minus 4.75 mm (No. 4) split before washing
- CMR-#₄ = Cumulative Mass Retained for the sieve sizes of M₃

Method C Example

Original dry mass of the sample \((M) \): 3304.5 g

Total mass after sieving equals Cumulative Mass Retained (CMR) on the 4.75 (No. 4) plus the minus 4.75 mm (No. 4) from the pan: 3085.0 g

Coarse Check Sum

\[Coarse \, Check \, Sum = \frac{3304.5 \, g - 3304.5 \, g}{3304.5 \, g} \times 100 = 0.0\% \]

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Cumulative Percent Retained (CPR) for the 9.5 mm (3/8 in.) sieve:

\[CPR = \frac{604.1 \, g}{3304.5 \, g} \times 100 = 18.3\% \]
Percent Passing (PP) for the 9.5 mm (3/8 in.) sieve:

\[
PP = 100.0\% - 18.3\% = 81.7\%
\]

Reported Percent Passing = 82%

Example for Alternate Percent Passing (PP) formula for the 9.5 mm (3/8 in.) sieve:

\[
PP = \frac{3304.5 - 604.1}{3304.5} \times 100 = 81.7\%
\]

Reported Percent Passing = 82%

Method C Cumulative Gradation on Coarse Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained, g (CMR)</th>
<th>Determine CPR Divide CMR by M and multiply by 100</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Determine PP by subtracting CPR from 100.0</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0.0</td>
<td>100.0</td>
<td></td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>125.9</td>
<td>(\frac{125.9}{3304.5}\times 100 = 3.8)</td>
<td>3.8</td>
<td></td>
<td>100.0 - 3.8 =</td>
<td>96.2</td>
</tr>
<tr>
<td>9.50 (3/8)</td>
<td>604.1</td>
<td>(\frac{604.1}{3304.5}\times 100 = 18.3)</td>
<td>18.3</td>
<td></td>
<td>100.0 - 18.3 =</td>
<td>81.7</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1295.6</td>
<td>(\frac{1295.6}{3304.5}\times 100 = 39.2)</td>
<td>39.2</td>
<td></td>
<td>100.0 - 39.2 =</td>
<td>60.8 (#4 PP)</td>
</tr>
<tr>
<td>Mass in pan</td>
<td>2008.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMR: 1295.6 + 2008.9 = 3304.5

Original dry mass of the sample (M): 3304.5
Fine Sample
The pan (2008.9 g) was reduced according to the FOP for AASHTO R 76, to at least 500 g. In this case, the reduced mass was determined to be 527.6 g. This is M_3.

Dry mass of minus 4.75mm (No. 4) reduced portion before wash (M_3): 527.6 g
Dry mass of minus 4.75mm (No. 4) reduced portion after wash: 495.3 g
Total mass after fine sieving equals
Final Cumulative Mass Retained (FCMR)
(includes minus 75 µm (No. 200) from the pan): 495.1 g

Fine Check Sum

$$Fine \ Check \ Sum = \frac{495.3 \ g - 495.1 \ g}{495.3 \ g} \times 100 = 0.04\%$$

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

Cumulative Percent Retained (CPR$_{#4}$) for minus 4.75 mm (No. 4) for the 2.0 mm (No. 10) sieve:

$$CPR_{-#4} = \frac{194.3 \ g}{527.6 \ g} \times 100 = 36.8\%$$

Percent Passing (PP$_{#4}$) for minus 4.75 mm (No. 4) for the 2.0 mm (No. 10) sieve:

$$PP_{-#4} = 100.0\% - 36.8\% = 63.2\%$$
Method C Cumulative Gradation on Fine Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained g (CMR#4)</th>
<th>Determine CPR#4 Divide CMR by M\textsubscript{3} and multiply by 100</th>
<th>Cumulative Percent Retained#4 (CPR#4)</th>
<th>Determine PP#4 by subtracting CPR#4 from 100.0</th>
<th>Percent Passing#4 (PP#4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 (No. 10)</td>
<td>194.3</td>
<td>(\frac{194.3 \times 100}{527.6} = 36.8)</td>
<td>100.0 − 36.8 = 63.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>365.6</td>
<td>(\frac{365.6 \times 100}{527.6} = 69.3)</td>
<td>100.0 − 69.3 = 30.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>430.8</td>
<td>(\frac{430.8 \times 100}{527.6} = 81.7)</td>
<td>100.0 − 81.7 = 18.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>484.4</td>
<td>(\frac{484.4 \times 100}{527.6} = 91.8)</td>
<td>100.0 − 91.8 = 8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCMR</td>
<td>495.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dry mass of minus 4.75 mm (No. 4) reduced portion before wash \((M\textsubscript{3})\): 527.6 g

Dry mass after washing: 495.3 g

Percent Passing (PP) for the 2.0 mm (No. 10) sieve for the entire sample:

\[
PP = \frac{63.2\% \times 60.8\%}{100} = 38.4\%
\]

Reported Percent Passing = 38%
Method C Cumulative Final Gradation on All Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained g (CMR)</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Percent Passing (PP -#4)</th>
<th>Determine PP multiply PP -#4 by #4 PP and divide by 100</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0.0</td>
<td></td>
<td></td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>125.9</td>
<td>3.8</td>
<td></td>
<td></td>
<td>96.2</td>
<td>96</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>604.1</td>
<td>18.3</td>
<td></td>
<td></td>
<td>81.7</td>
<td>82</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1295.6</td>
<td>39.2</td>
<td></td>
<td>60.8 (#4 PP)</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>
| 2.0 (No. 10) | 194.3 | 36.8 | 63.2 | \[
\frac{63.2 \times 60.8}{100} = 38.4
\] | 38.4 | 38 |
| 0.425 (No. 40) | 365.6 | 69.3 | 30.7 | \[
\frac{30.7 \times 60.8}{100} = 18.7
\] | 18.7 | 19 |
| 0.210 (No. 80) | 430.8 | 81.7 | 18.3 | \[
\frac{18.3 \times 60.8}{100} = 11.1
\] | 11.1 | 11 |
| 0.075 (No. 200) | 484.4 | 91.8 | 8.2 | \[
\frac{8.2 \times 60.8}{100} = 5.0
\] | 5.0 | 5.0 |
| FCMR | 495.1 | | | | | |

* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
Example for Alternate Percent Passing (PP) for the 4.75 mm (No. 4) sieve for the entire sample:

#4 PP (Total Percent Passing the 4.75 mm (No. 4) sieve) = 60.8%

\[PP = \frac{60.8\%}{527.6} \times (527.6 - 194.3) = 38.4\% \]

Reported Percent Passing = 38%

Alternate Method C Cumulative Gradation on Coarse Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained, g (CMR)</th>
<th>Determine PP subtract CMR from M, divide result by M multiply by 100</th>
<th>Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0.0</td>
<td></td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>125.9</td>
<td>(\frac{3304.5 - 125.9}{3304.5} \times 100 = 96.2)</td>
<td>96.2</td>
<td>96</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>604.1</td>
<td>(\frac{3304.5 - 604.1}{3304.5} \times 100 = 81.7)</td>
<td>81.7</td>
<td>82</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1295.6</td>
<td>(\frac{3304.5 - 1295.6}{3304.5} \times 100 = 60.8)</td>
<td>60.8 (#4 PP)</td>
<td>61</td>
</tr>
<tr>
<td>Mass in Pan</td>
<td>2008.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cumulative sieved mass: 1295.6 + 2008.9 = 3304.5

Original dry mass of the sample \((M)\): 3304.5
Alternate Method C Cumulative Gradation on Fine Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained g (CMR-#4)</th>
<th>Determine PP-#4 subtract CMR-#4 from M3, divide result by M3 multiply by 100</th>
<th>Percent Passing #4 (PP-#4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 (No. 10)</td>
<td>194.3</td>
<td>$\frac{527.6 - 194.3}{527.6} \times 100$</td>
<td>63.2</td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>365.6</td>
<td>$\frac{527.6 - 365.6}{527.6} \times 100$</td>
<td>30.7</td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>430.8</td>
<td>$\frac{527.6 - 430.8}{527.6} \times 100$</td>
<td>18.3</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>484.4</td>
<td>$\frac{527.6 - 484.4}{527.6} \times 100$</td>
<td>8.2</td>
</tr>
<tr>
<td>FCMR</td>
<td>495.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dry mass of minus 4.75mm (No. 4) reduced portion before wash (M_3): 527.6 g

Dry mass after washing: 495.3 g
Alternate Method C Cumulative
Final Gradation on All Sieves

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Percent Passing #4 (PP #4)</th>
<th>Determine PP multiply PP #4 by #4 PP and divide by 100</th>
<th>Determined Percent Passing (PP)</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td></td>
<td></td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td></td>
<td></td>
<td>96.2</td>
<td>96</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td></td>
<td></td>
<td>81.7</td>
<td>82</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td></td>
<td>60.8 (#4 PP)</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>2.0 (No. 10)</td>
<td>63.2</td>
<td>$\frac{63.2 \times 60.8}{100} = 38.4$</td>
<td>38.4</td>
<td>38</td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>30.7</td>
<td>$\frac{30.7 \times 60.8}{100} = 18.7$</td>
<td>18.7</td>
<td>19</td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>18.3</td>
<td>$\frac{18.3 \times 60.8}{100} = 11.1$</td>
<td>11.1</td>
<td>11</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>8.2</td>
<td>$\frac{8.2 \times 60.8}{100} = 5.0$</td>
<td>5.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.
FINENESS MODULUS

Fineness Modulus (FM) is used in determining the degree of uniformity of the aggregate gradation in PCC mix designs. It is an empirical number relating to the fineness of the aggregate. The higher the FM the coarser the aggregate. Values of 2.40 to 3.00 are common for fine aggregate in PCC.

The sum of the cumulative percentages retained on specified sieves in the following table divided by 100 gives the FM.

Sample Calculation

<table>
<thead>
<tr>
<th>Sieve Size mm (in)</th>
<th>Percent Retained</th>
<th>Example A</th>
<th>Example B</th>
</tr>
</thead>
<tbody>
<tr>
<td>75*(3)</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37.5*(11/2)</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19*(3/4)</td>
<td>15</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>9.5*(3/8)</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4.75*(No.4)</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2.36*(No.8)</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1.18*(No.16)</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.60*(No.30)</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.30*(No.50)</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.15*(100)</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Σ = 785 Σ = 278

FM = 7.85 FM = 2.78

In decreasing size order, each * sieve is one-half the size of the preceding * sieve.
Report

- On forms approved by the agency
- Sample ID
- Percent passing for each sieve
- Individual mass retained for each sieve
- Individual percent retained for each sieve
 or
- Cumulative mass retained for each sieve
- Cumulative percent retained for each sieve
- FM to the nearest 0.01

Report percentages to the nearest 1 percent except for the percent passing the 75 µm (No. 200) sieve, which shall be reported to the nearest 0.1 percent.
ANNEX A

Time Evaluation

(Mandatory information)

The sieving time for each mechanical sieve shaker shall be checked at least annually to determine the time required for complete separation of the sample by the following method:

1. Shake the sample over nested sieves for approximately 10 minutes.

2. Provide a snug-fitting pan and cover for each sieve and hold in a slightly inclined position in one hand.

3. Hand shake each sieve by striking the side of the sieve sharply and with an upward motion against the heel of the other hand at the rate of about 150 times per minute, turning the sieve about one sixth of a revolution at intervals of about 25 strokes.

Note A1: A mallet may be used instead of the heel of the hand if comparable force is used.

If more than 0.5 percent by mass of the total sample before sieving passes any sieve after one minute of continuous hand shaking adjust shaker time and re-check.

In determining sieving time for sieve sizes larger than 4.75 mm (No. 4), limit the material on the sieve to a single layer of particles.
ANNEX B
Overload Determination
(Mandatory information)

Additional sieves may be necessary to keep from overloading sieves or to provide other information, such as fineness modulus. The sample may also be sieved in increments to prevent overloading.

- For sieves with openings smaller than 4.75 mm (No. 4), the mass retained on any sieve shall not exceed 7 kg/m² (4 g/in²) of sieving surface.
- For sieves with openings 4.75 mm (No. 4) and larger, the mass, in grams shall not exceed the product of $2.5 \times$ (sieve opening in mm) \times (effective sieving area). See Table B1.

TABLE B1
Maximum Allowable Mass of Material Retained on a Sieve, g
Nominal Sieve Size, mm (in.)
Exact size is smaller (see AASHTO T 27)

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>203 dia (8)</th>
<th>305 dia (12)</th>
<th>305 by 305 (12 x 12)</th>
<th>350 by 350 (14 x 14)</th>
<th>372 by 580 (16 x 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieving Area m²</td>
<td>0.0285</td>
<td>0.0670</td>
<td>0.0929</td>
<td>0.1225</td>
<td>0.2158</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>90 (3 1/2)</td>
<td>*</td>
<td>15,100</td>
<td>20,900</td>
<td>27,600</td>
<td>48,500</td>
</tr>
<tr>
<td>75 (3)</td>
<td>*</td>
<td>12,600</td>
<td>17,400</td>
<td>23,000</td>
<td>40,500</td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>*</td>
<td>10,600</td>
<td>14,600</td>
<td>19,300</td>
<td>34,000</td>
</tr>
<tr>
<td>50 (2)</td>
<td>3600</td>
<td>8400</td>
<td>11,600</td>
<td>15,300</td>
<td>27,000</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>2700</td>
<td>6300</td>
<td>8700</td>
<td>11,500</td>
<td>20,200</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>1800</td>
<td>4200</td>
<td>5800</td>
<td>7700</td>
<td>13,500</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>1400</td>
<td>3200</td>
<td>4400</td>
<td>5800</td>
<td>10,200</td>
</tr>
<tr>
<td>16.0 (5/8)</td>
<td>1100</td>
<td>2700</td>
<td>3700</td>
<td>4900</td>
<td>8600</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>890</td>
<td>2100</td>
<td>2900</td>
<td>3800</td>
<td>6700</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>670</td>
<td>1600</td>
<td>2200</td>
<td>2900</td>
<td>5100</td>
</tr>
<tr>
<td>6.3 (1/4)</td>
<td>440</td>
<td>1100</td>
<td>1500</td>
<td>1900</td>
<td>3400</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>330</td>
<td>800</td>
<td>1100</td>
<td>1500</td>
<td>2600</td>
</tr>
<tr>
<td>-4.75 (-No. 4)</td>
<td>200</td>
<td>470</td>
<td>650</td>
<td>860</td>
<td>1510</td>
</tr>
</tbody>
</table>
DETERMINING THE PERCENTAGE OF FRACTURE IN COARSE AGGREGATE FOP FOR AASHTO T 335

Scope

This procedure covers the determination of the percentage, by mass, of a coarse aggregate (CA) sample that consists of fractured particles meeting specified requirements in accordance with AASHTO T 335-09.

In this FOP, a sample of aggregate is screened on the sieve separating CA and fine aggregate (FA). This sieve will be identified in the agency’s specifications but might be the 4.75 mm (No. 4) sieve. CA particles are visually evaluated to determine conformance to the specified fracture. The percentage of conforming particles, by mass, is calculated for comparison to the specifications.

Apparatus

- Balance or scale: Capacity sufficient for the principle sample mass, accurate to 0.1 percent of the sample mass or readable to 0.1 g and meeting the requirements of AASHTO M 231.

- Sieves: Meeting requirements of the FOP for AASHTO T 27/T 11.

- Splitter: Meeting the requirements of FOP for AASHTO R 76.

Terminology

1. Fractured Face: An angular, rough, or broken surface of an aggregate particle created by crushing or by other means. A face is considered a “fractured face” whenever one-half or more of the projected area, when viewed normal to that face, is fractured with sharp and well-defined edges. This excludes small nicks.

2. Fractured particle: A particle of aggregate having at least the minimum number of fractured faces specified. (This is usually one or two.)

Sampling and Sample Preparation

1. Sample and reduce the aggregate in accordance with the FOPs for AASHTO R 90 and R 76.

2. When the specifications list only a total fracture percentage, the sample shall be prepared in accordance with Method 1. When the specifications require that the fracture be counted and reported on each sieve, the sample shall be prepared in accordance with Method 2.
3. Method 1 - Combined Fracture Determination

 a. Dry the sample sufficiently to obtain a clean separation of FA and CA material in the sieving operation.

 b. Sieve the sample in accordance with the FOP for AASHTO T 27/ T 11 over the 4.75 mm (No. 4) sieve, or the appropriate sieve listed in the agency’s specifications for this material.

 Note 1: Where necessary, wash the sample over the sieve designated for the determination of fractured particles to remove any remaining fine material, and dry to a constant mass in accordance with the FOP for AASHTO T 255.

 c. Reduce the sample using Method A – Mechanical Splitter, in accordance with the FOP for AASHTO R 76, to the appropriate test size. This test size should be slightly larger than shown in Table 1, to account for loss of fines through washing if necessary.

 TABLE 1
 Sample Size
 Method 1 (Combined Sieve Fracture)

<table>
<thead>
<tr>
<th>Nominal Maximum Size* mm (in.)</th>
<th>Minimum Cumulative Sample Mass Retained on 4.75 mm (No. 4) Sieve g (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5 (1 1/2)</td>
<td>2500 (6)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>1500 (3.5)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>1000 (2.5)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>700 (1.5)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>400 (0.9)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>200 (0.4)</td>
</tr>
</tbody>
</table>

 * One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

4. Method 2 – Individual Sieve Fracture Determination

 a. Dry the sample sufficiently to obtain a clean separation of FA and CA material in the sieving operation. A washed sample from the gradation determination (the FOP for T 27/T 11) may be used.

 b. If not, sieve the sample in accordance with the FOP for AASHTO T 27 over the sieves listed in the specifications for this material.

 Note 2: If overload (buffer) sieves are used the material from that sieve must be added to the next specification sieve.
c. The size of test sample for each sieve shall meet the minimum size shown in Table 2. Utilize the total retained sieve mass or select a representative portion from each sieve mass by splitting or quartering in accordance with the FOP for AASHTO R 76.

Note 3: Where necessary, wash the sample over the sieves designated for the determination of fractured particles to remove any remaining fine material, and dry to a constant mass in accordance with the FOP for AASHTO T 255.

TABLE 2

Sample Size

Method 2 (Individual Sieve Fracture)

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Minimum Sample Mass g (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5 (1 1/4)</td>
<td>1500 (3.5)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>1000 (2.2)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>700 (1.5)</td>
</tr>
<tr>
<td>16.0 (5/8)</td>
<td>500 (1.0)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>300 (0.7)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>200 (0.5)</td>
</tr>
<tr>
<td>6.3 (1/4)</td>
<td>100 (0.2)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>100 (0.2)</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>25 (0.1)</td>
</tr>
<tr>
<td>2.00 (No. 10)</td>
<td>25 (0.1)</td>
</tr>
</tbody>
</table>

Note 4: If fracture is determined on a sample obtained for gradation, use the mass retained on the individual sieves, even if it is less than the minimum listed in Table 2. If less than 5 percent of the total mass is retained on a single specification sieve, include that material on the next smaller specification sieve. If a smaller specification sieve does not exist, this material shall not be included in the fracture determination.

Procedure

1. After cooling, spread the dried sample on a clean, flat surface.

2. Examine each particle face and determine if the particle meets the fracture criteria.

3. Separate the sample into three categories:
 - Fractured particles meeting the criteria
 - Particles not meeting the criteria
 - Questionable or borderline particles

4. Determine the dry mass of particles in each category to the nearest 0.1 g.

5. Calculate the percent questionable particles.
6. Re-sort the questionable particles when more than 15 percent is present. Continue sorting until there is no more than 15 percent in the questionable category.

7. Calculate the percent fractured particles meeting criteria to nearest 0.1 percent. Report to 1 percent.

Calculation

Calculate the mass percentage of questionable particles to the nearest 1 percent using the following formula:

\[
\%Q = \frac{Q}{F + Q + N} \times 100
\]

Where:

- \(\%Q\) = Percent of questionable fractured particles
- \(F\) = Mass of fractured particles
- \(Q\) = Mass of questionable or borderline particles
- \(N\) = Mass of unfractured particles

Example:

\[
\%Q = \frac{97.6 \text{ g}}{632.6 \text{ g} + 97.6 \text{ g} + 352.6 \text{ g}} \times 100 = 9.0\%
\]

Given:
- Mass of fractured particles = 632.6 g
- Mass of questionable particles = 97.6 g
- Mass of unfractured particles = 352.6 g

Calculate the mass percentage of fractured faces to the nearest 0.1 percent using the following formula:

\[
P = \frac{Q + F}{F + Q + N} \times 100
\]

Where:

- \(P\) = Percent of fracture
- \(F\) = Mass of fractured particles
- \(Q\) = Mass of questionable particles
- \(N\) = Mass of unfractured particles
Example:

\[
P = \frac{\frac{97.6 \text{ g}}{2} + 632.6 \text{ g}}{632.6 \text{ g} + 97.6 \text{ g} + 352.6 \text{ g}} \times 100 = 62.9\% \quad \text{Report 63%}
\]

Given:

- Mass of fractured particles = 632.6 g,
- Mass of questionable particles = 97.6 g
- Mass of unfractured particles = 352.6 g

Report

- On forms approved by the agency
- Sample ID
- Fractured particles to the nearest 1 percent.
PLASTIC FINES IN GRADED AGGREGATES AND SOILS BY THE USE OF THE SAND EQUIVALENT TEST
FOP FOR AASHTO T 176

Scope

This procedure covers the determination of plastic fines in accordance with AASHTO T 176-02. It serves as a rapid test to show the relative proportion of fine dust or clay-like materials in fine aggregates (FA) and soils.

Apparatus

See AASHTO T 176 for a detailed listing of sand equivalent apparatus. Note that the siphon tube and blow tube may be glass or stainless steel as well as copper.

- Graduated plastic cylinder.
- Rubber stopper.
- Irrigator tube.
- Weighted foot assembly: Having a mass of 1000 ±5g. There are two models of the weighted foot assembly. The older model has a guide cap that fits over the upper end of the graduated cylinder and centers the rod in the cylinder. It is read using a slot in the centering screws. The newer model has a sand-reading indicator 254 mm (10 in.) above this point and is preferred for testing clay-like materials.
- Bottle: clean, glass or plastic, of sufficient size to hold working solution
- Siphon assembly: The siphon assembly will be fitted to a 4 L (1 gal.) bottle of working calcium chloride solution placed on a shelf 915 ±25 mm (36 ±1 in.) above the work surface.
- Measuring can: With a capacity of 85 ±5 mL (3 oz.).
- Funnel: With a wide-mouth for transferring sample into the graduated cylinder.
- Quartering cloth: 600 mm (2 ft.) square nonabsorbent cloth, such as plastic or oilcloth.
- Mechanical splitter: See the FOP for AASHTO R 76.
- Strike-off bar: A straightedge or spatula.
- Clock or watch reading in minutes and seconds.
• Manually-operated sand equivalent shaker: Capable of producing an oscillating motion at a rate of 100 complete cycles in 45 ±5 seconds, with a hand assisted half stroke length of 127 ±5 mm (5 ±0.2 in.). It may be held stable by hand during the shaking operation. It is recommended that this shaker be fastened securely to a firm and level mount, by bolts or clamps, if a large number of determinations are to be made.

• Mechanical shaker: See AASHTO T 176 for equipment and procedure.

• Oven: Capable of maintaining a temperature of 110 ±5°C (230 ±9°F).

• Thermometer: Calibrated liquid-in-glass or electronic digital type designed for total immersion and accurate to 0.1°C (0.2°F).

Materials

• Stock calcium chloride solution: Obtain commercially prepared calcium chloride stock solution meeting AASHTO requirements.

• Working calcium chloride solution: Make 3.8 L (1 gal) of working solution. Fill the bottle with 2 L (1/2 gal) of distilled or demineralized water, add one 3 oz. measuring can (85 ±5 mL) of stock calcium chloride solution. Agitate vigorously for 1 to 2 minutes. Add the remainder of the water, approximately 2 L (1/2 gal) for a total of 3.8 L (1 gal) of working solution. Repeat the agitation process. Tap water may be used if it is proven to be non-detrimental to the test and if it is allowed by the agency. The shelf life of the working solution is approximately 30 days. Label working solution with the date mixed. Discard working solutions more than 30 days old.

 Note 1: The graduated cylinder filled to 4.4 in. contains 88 mL and may be used to measure the stock solution.

Control

The temperature of the working solution should be maintained at 22 ±3°C (72 ±5°F) during the performance of the test. If field conditions preclude the maintenance of the temperature range, reference samples should be submitted to the Central/Regional Laboratory, as required by the agency, where proper temperature control is possible. Samples that meet the minimum sand equivalent requirement at a working solution temperature outside of the temperature range need not be subject to reference testing.

Sample Preparation

1. Obtain the sample in accordance with the FOP for AASHTO R 90 and reduce in accordance with the FOP for AASHTO R 76.

2. Sieve the sample over the 4.75 mm (No. 4) sieve. If the material is in clods, break it up and re-screen it over a 4.75 mm (No. 4) sieve. Clean all fines from particles retained on the 4.75 mm (No. 4) sieve and include with the material passing that sieve.
3. Split or quarter 1000 to 1500 g of material from the portion passing the 4.75 mm (No. 4) sieve. Use extreme care to obtain a truly representative portion of the original sample.

Note 2: Experiments show that, as the amount of material being reduced by splitting or quartering is decreased, the accuracy of providing representative portions is reduced. It is imperative that the sample be split or quartered carefully. When it appears necessary, dampen the material before splitting or quartering to avoid segregation or loss of fines.

Note 3: All tests, including reference tests, will be performed using Alternative Method No. 2 as described in AASHTO T 176, unless otherwise specified.

4. The sample must have the proper moisture content to achieve reliable results. This condition is determined by tightly squeezing a small portion of the thoroughly mixed sample in the palm of the hand. If the cast that is formed permits careful handling without breaking, the correct moisture content has been obtained.

Note 4: Clean sands having little 75 µm (No. 200), such as sand for Portland Cement Concrete (PCC), may not form a cast.

If the material is too dry, the cast will crumble and it will be necessary to add water and remix and retest until the material forms a cast. When the moisture content is altered to provide the required cast, the altered sample should be placed in a pan, covered with a lid or with a damp cloth that does not touch the material, and allowed to stand for a minimum of 15 minutes. Samples that have been sieved without being air-dried and still retain enough natural moisture are exempted from this requirement.

If the material shows any free water, it is too wet to test and must be drained and air dried. Mix frequently to ensure uniformity. This drying process should continue until squeezing provides the required cast.

5. Place the sample on the quartering cloth and mix by alternately lifting each corner of the cloth and pulling it over the sample toward the diagonally opposite corner, being careful to keep the top of the cloth parallel to the bottom, thus causing the material to be rolled. When the material appears homogeneous, finish the mixing with the sample in a pile near the center of the cloth.

6. Fill the measuring can by pushing it through the base of the pile while exerting pressure with the hand against the pile on the side opposite the measuring can. As the can is moved through the pile, hold enough pressure with the hand to cause the material to fill the tin to overflowing. Press firmly with the palm of the hand, compacting the material and placing the maximum amount in the can. Strike off the can level full with the straightedge or spatula.

7. When required, repeat steps 5 and 6 to obtain additional samples.
Procedure

1. Start the siphon by forcing air into the top of the solution bottle through the tube while the pinch clamp is open. Siphon 101.6 ±2.5 mm (4 ±0.1 in.) of working calcium chloride solution into the plastic cylinder.

2. Pour the prepared test sample from the measuring can into the plastic cylinder, using the funnel to avoid spilling.

3. Tap the bottom of the cylinder sharply on the heel of the hand several times to release air bubbles and to promote thorough wetting of the sample.

4. Allow the wetted sample to stand undisturbed for 10 ±1 minutes.

5. At the end of the 10-minute period, stopper the cylinder and loosen the material from the bottom by simultaneously partially inverting and shaking the cylinder.

6. After loosening the material from the bottom of the cylinder, shake the cylinder and contents by any one of the following methods:

 a. Mechanical Method – Place the stoppered cylinder in the mechanical shaker, set the timer, and allow the machine to shake the cylinder and contents for 45 ±1 seconds.

 Caution: Agencies may require additional operator qualifications for the next two methods.

 b. Manually-operated Shaker Method – Secure the stoppered cylinder in the three spring clamps on the carriage of the manually-operated sand equivalent shaker and set the stroke counter to zero. Stand directly in front of the shaker and force the pointer to the stroke limit marker painted on the backboard by applying an abrupt horizontal thrust to the upper portion of the right hand spring strap.

 Remove the hand from the strap and allow the spring action of the straps to move the carriage and cylinder in the opposite direction without assistance or hindrance. Apply enough force to the right-hand spring steel strap during the thrust portion of each stroke to move the pointer to the stroke limit marker by pushing against the strap with the ends of the fingers to maintain a smooth oscillating motion. The center of the stroke limit marker is positioned to provide the proper stroke length and its width provides the maximum allowable limits of variation.

 Proper shaking action is accomplished when the tip of the pointer reverses direction within the marker limits. Proper shaking action can best be maintained by using only the forearm and wrist action to propel the shaker. Continue shaking for 100 strokes.

 c. Hand Method – Hold the cylinder in a horizontal position and shake it vigorously in a horizontal linear motion from end to end. Shake the cylinder 90 cycles in approximately 30 seconds using a throw of 229 mm ±25 mm (9 ±1 in.). A cycle is defined as a complete back and forth motion. To properly shake the cylinder at this
speed, it will be necessary for the operator to shake with the forearms only, relaxing the body and shoulders.

7. Set the cylinder upright on the work table and remove the stopper.

8. Insert the irrigator tube in the cylinder and rinse material from the cylinder walls as the irrigator is lowered. Force the irrigator through the material to the bottom of the cylinder by applying a gentle stabbing and twisting action while the working solution flows from the irrigator tip. Work the irrigator tube to the bottom of the cylinder as quickly as possible, since it becomes more difficult to do this as the washing proceeds. This flushes the fine material into suspension above the coarser sand particles.

Continue to apply a stabbing and twisting action while flushing the fines upward until the cylinder is filled to the 381 mm (15 in.) mark. Then raise the irrigator slowly without shutting off the flow so that the liquid level is maintained at about 381 mm (15 in.) while the irrigator is being withdrawn. Regulate the flow just before the irrigator is entirely withdrawn and adjust the final level to 381 mm (15 in.).

Note 5: Occasionally the holes in the tip of the irrigator tube may become clogged by a particle of sand. If the obstruction cannot be freed by any other method, use a pin or other sharp object to force it out, using extreme care not to enlarge the size of the opening. Also, keep the tip sharp as an aid to penetrating the sample.

9. Allow the cylinder and contents to stand undisturbed for 20 minutes ±15 seconds. Start timing immediately after withdrawing the irrigator tube.

Note 6: Any vibration or movement of the cylinder during this time will interfere with the normal settling rate of the suspended clay and will cause an erroneous result.

10. Clay and sand readings:

 a. At the end of the 20-minute sedimentation period, read and record the level of the top of the clay suspension. This is referred to as the clay reading.

 Note 7: If no clear line of demarcation has formed at the end of the 20-minute sedimentation period, allow the sample to stand undisturbed until a clay reading can be obtained, then immediately read and record the level of the top of the clay suspension and the total sedimentation time. If the total sedimentation time exceeds 30 minutes, rerun the test using three individual samples of the same material. Read and record the clay column height of the sample requiring the shortest sedimentation period only. Once a sedimentation time has been established, subsequent tests will be run using that time. The time will be recorded along with the test results on all reports.

 b. After the clay reading has been taken, place the weighted foot assembly over the cylinder and gently lower the assembly until it comes to rest on the sand. Do not allow the indicator to hit the mouth of the cylinder as the assembly is being lowered. Subtract 254 mm (10 in.) from the level indicated by the extreme top edge of the indicator and record this value as the sand reading.

 c. If clay or sand readings fall between 2.5 mm (0.1 in.) graduations, record the level of the higher graduation as the reading. For example, a clay reading that appears to be 7.95 would be recorded as 8.0; a sand reading that appears to be 3.22 would be recorded as 3.3.
d. If two Sand Equivalent (SE) samples are run on the same material and the second varies by more than ±4, based on the first cylinder result, additional tests shall be run.

e. If three or more Sand Equivalent (SE) samples are run on the same material, average the results. If an individual result varies by more than ±4, based on the average result, additional tests shall be run.

Calculations

Calculate the SE to the nearest 0.1 using the following formula:

\[SE = \frac{\text{Sand Reading}}{\text{Clay Reading}} \times 100 \]

Example

Given:

\[
\begin{align*}
\text{Sand Reading} &= 3.3 \\
\text{Clay Reading} &= 8.0 \\
\end{align*}
\]

\[
SE = \frac{3.3}{8.0} \times 100 = 41.25 \text{ or } 41.3 \quad \text{Report 42}
\]

Note 8: This example reflects the use of equipment made with English units. At this time, equipment made with metric units is not available.

Report the SE as the next higher whole number. In the example above, the 41.3 would be reported as 42. An SE of 41.0 would be reported as 41.

When averaging two or more samples, raise each calculated SE value to the next higher whole number (reported value) before averaging.

Example:

\[
\begin{align*}
\text{calculated value 1} &= 41.3 \\
\text{calculated value 2} &= 42.8 \\
\end{align*}
\]

These values are reported as 42 and 43, respectively.
Average the two reported values:

\[
Average SE = \frac{42 + 43}{2} = 42.5 \quad \text{Report 43}
\]

If the average value is not a whole number, raise it to the next higher whole number.

Report

- On forms approved by the agency
- Sample ID
- Results to the next higher whole number
- Sedimentation time if over 20 minutes