MOISTURE CONTENT OF ASPHALT MIXTURES BY OVEN METHOD
FOP FOR AASHTO T 329

Scope
This procedure covers the determination of moisture content of asphalt mixtures in accordance with AASHTO T 329-15.

Overview
Moisture content is determined by comparing the wet mass of a sample and the mass of the sample after drying to constant mass. The term constant mass is used to define when a sample is dry.

Constant mass – the state at which a mass does not change more than a given percent, after additional drying for a defined time interval, at a required temperature.

Apparatus
- Balance or scale: 2 kg capacity, readable to 0.1 g and conforming to AASHTO M 231.
- Forced draft, ventilated, or convection oven: Capable of maintaining the temperature surrounding the sample at 163 ±14°C (325 ±25°F).
- Sample Container: Clean, dry, not affected by heat and of sufficient size to contain a test sample without danger of spilling.
- Thermometer or other suitable device with a temperature range of 10-260°C (50-500°F).

Sample
The test sample shall be obtained in accordance with the FOP for AASHTO T 168, R 97 and reduced in accordance with the FOP for AASHTO R 47. The size of the test sample shall be a minimum of 1000 g.

Procedure
1. Preheat the oven to the Job Mix Formula (JMF) mixing temperature range. If the mixing temperature is not supplied, a temperature of 163 ±14°C (325 ±25°F) is to be used.

 Note 1: For repeatability between laboratories, the preferred practice is to dry the sample at no less than 9°C (15°F) below the JMF mixing temperature.

2. Determine and record the mass of the sample container, including release media, to the nearest 0.1 g.

 Note 2: When using paper or other absorptive material to line the sample container ensure it is dry before determining initial mass of sample container.

3. Place the test sample in the sample container.

4. Determine and record the temperature of the test sample.
5. Determine and record the total mass of the sample container and test sample to the nearest 0.1 g.

6. Calculate the initial, moist mass (M_i) of the test sample by subtracting the mass of the sample container as determined in Step 2 from the total mass of the sample container and the test sample as determined in Step 5.

7. The test sample shall be initially dried for 90 ±5 minutes, and its mass determined. Then it shall be dried at 30 ±5 minute intervals until further drying does not alter the mass by more than 0.05 percent.

8. Cool the sample container and test sample to ±9°C (±15°F) of the temperature determined in Step 4.

9. Determine and record the total mass of the sample container and test sample to the nearest 0.1 g.

 Note 3: Do not attempt to remove the test sample from the sample container for the purposes of determining mass.

10. Calculate the final, dry mass (M_f) of the test sample by subtracting the mass of the sample container as determined in Step 2 from the total mass of the sample container and the test sample as determined in Step 9.

 Note 43: Moisture content and the number of samples in the oven will affect the rate of drying at any given time. Placing wet samples in the oven with nearly dry samples could affect the drying process.

Calculations

Constant Mass:

Calculate constant mass using the following formula:

\[
\% \text{ Change} = \frac{M_p - M_n}{M_p} \times 100
\]

Where:

- \(M_p \) = previous mass measurement
- \(M_n \) = new mass measurement
Example:

Mass of container: 232.6 g
Mass of container and sample after first drying cycle: 1361.8 g
Mass, M_p, of possibly dry sample: $1361.8 \text{ g} - 232.6 \text{ g} = 1129.2 \text{ g}$
Mass of container and possibly dry sample after second drying cycle: 1360.4 g
Mass, M_n, of possibly dry sample: $1360.4 \text{ g} - 232.6 \text{ g} = 1127.8 \text{ g}$

$$\frac{1129.2 \text{ g} - 1127.8 \text{ g}}{1129.2 \text{ g}} \times 100 = 0.12\%$$

0.12 percent is not less than 0.05 percent, so continue drying the sample.

Mass of container and possibly dry sample after third drying cycle: 1359.9 g
Mass, M_n, of dry sample: $1359.9 \text{ g} - 232.6 \text{ g} = 1127.3 \text{ g}$

$$\frac{1127.8 \text{ g} - 1127.3 \text{ g}}{1127.8 \text{ g}} \times 100 = 0.04\%$$

0.04 percent is less than 0.05 percent, so constant mass has been reached.

Moisture Content:

Calculate the moisture content, as a percent, using the following formula.

$$Moisture\ Content = \frac{M_i - M_f}{M_f} \times 100$$

Where:

M_i = initial, moist mass
M_f = final, dry mass
Example:

\[M_i = 1134.9 \text{ g} \]
\[M_f = 1127.3 \text{ g} \]

\[
\text{Moisture Content} = \frac{1134.9 \text{ g} - 1127.3 \text{ g}}{1127.3 \text{ g}} \times 100 = 0.674, \text{ say 0.67\%}
\]

Report

- Results on forms approved by the agency
- Sample ID
- Moisture content to the nearest 0.01 percent